40 1 3MB
TAREA FINAL DE UNIDAD II Módulo: Transferencia de Calor Nombre: Misael Castillo Castor Docente: Dr. Carlos López Medina Carrera: Ing. Metal Mecánica Grupo: 9°A TN Matrícula: 17040043 Fecha: 09/07/20
2-58 En la industria del tratamiento térmico son muy comunes los hornos discontinuos eléctricos. Considere un horno discontinuo con un frente constituido por una placa de acero de 20 mm de espesor y una conductividad térmica de 25 W/m · K. El horno está situado en una habitación con una temperatura del aire circundante de 20ºC y un coeficiente promedio de transferencia de calor por convección de 10 W/m 2 · K. Si la superficie interna del frente del horno está sujeta a un flujo uniforme de calor de 5 kW/m2 y la superficie externa tiene una emisividad de 0.30, determine la temperatura superficial interna del frente del horno.
2-68 La tubería de una fábrica transporta vapor sobrecalentado a una razón de flujo de masa de 0.3 kg/s. La tubería mide 10 m de longitud, 5 cm de diámetro y sus paredes tienen un espesor de 6 mm. Tiene una conductividad térmica de 17 W/m · K y su superficie interna se encuentra a una temperatura uniforme de 120ºC. La caída de la temperatura entre la entrada y salida de la tubería es de 7ºC y el calor específico del vapor a presión constante es 2.190 J/kg ºC. Si la temperatura del área en la fábrica es de 25ºC, determine el coeficiente de transferencia de calor por convección entre la superficie externa de la tubería y el aire circundante.
2-70I Considere un tubo de vapor de agua de longitud L=30 ft, radio interior r1 =2 in, radio exterior r2 =2.4 in y conductividad térmica k=7.2 Btu/h · ft · °F. El vapor está fluyendo por el tubo a una temperatura promedio de 300°F y el coeficiente promedio de transferencia de calor por convección sobre la superficie interior se da como h=12.5 Btu/h · ft2 · °F. Si la temperatura promedio sobre la superficie exterior del tubo es T2 =175°F: a) exprese la ecuación diferencial y las condiciones de frontera para la conducción unidimensional y estacionaria de calor a través del tubo, b) obtenga una relación para la variación de la temperatura en éste, resolviendo la ecuación diferencial, y c) evalúe la razón de la pérdida de calor del vapor a través de este.
2-71 Un recipiente esférico de radio interior r1 =2 m, radio exterior r2 =2.1 m y conductividad térmica k =30 W/m · °C está lleno de agua con hielo a 0°C. El recipiente está ganando calor por convección del aire circundante que está a T∞ =25°C, con un coeficiente de transferencia de calor de h=18 W/m2 * °C. Si se supone que la temperatura de la superficie interior del recipiente es de 0°C, a) exprese la ecuación diferencial y las condiciones de frontera para la conducción unidimensional y estacionaria de calor a través del recipiente, b) obtenga una relación para la variación de la temperatura en él, resolviendo la ecuación diferencial, y c) evalúe la razón de la ganancia de calor del agua con hielo.
2-74 En una instalación de procesamiento de alimentos se usa un recipiente esférico de radio interior r1 =40 cm, radio exterior r2 =41 cm y conductividad térmica k =1.5 W/m · °C para almacenar agua caliente y mantenerla a 100°C en todo momento. Para realizar esto, la superficie exterior del recipiente se envuelve con un calentador eléctrico de cinta de 500 W y, a continuación, se aísla. Se observa que, en todo instante, la temperatura de la superficie interior del recipiente está cercana a 100°C. Si se supone que 10% del calor generado en el calentador se pierde a través del aislamiento, a) exprese la ecuación diferencial y las condiciones de frontera para la conducción unidimensional de calor en estado estacionario a través del recipiente, b) obtenga una relación para la variación de la temperatura en el material de ese recipiente, resolviendo la ecuación diferencial, y c) evalúe la temperatura de la superficie exterior del propio recipiente. También determine cuánta agua a 100°C puede suministrar este tanque de manera estacionaria, si el agua fría entra a 20°C.