153 53 653KB
Greek Pages 89 Year 2007
Eisagwg
sth Sunduastik
Jewra
twn Merik¸ Diatetagmènwn Sunìlwn
Qrhstos A. Ajanasiadhs Tmhma Majhmatikwn Panepisthmio Ajhnwn Anoixh 2006
2
Perieqìmena
1
2
3
4
Arqikè
'Ennoie
5
1.1
Apeikonsei kai sqèsei isodunama . . . . . . . . . . . . . . . . . . . . . . .
5
1.2
Merikè diatxei kai isomorfismo . . . . . . . . . . . . . . . . . . . . . . . .
8
1.3
Prxei se merikè diatxei . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
1.4
Ask sei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
Alusde kai Antialusde
23
2.1
Alusde , antialusde kai diabajmsei . . . . . . . . . . . . . . . . . . . . .
23
2.2
Ide¸dh kai fltra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
2.3
To Je¸rhma tou Dilworth . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
2.4
Summetrikè alusde kai to Je¸rhma tou Sperner . . . . . . . . . . . . . . .
32
2.5
Ask sei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37
Ide¸dh kai Grammikè Epektsei
45
3.1
Morfismo merik¸n diatxewn . . . . . . . . . . . . . . . . . . . . . . . . . .
45
3.2
H merik ditaxh twn idewd¸n . . . . . . . . . . . . . . . . . . . . . . . . . .
46
3.3
Grammikè epektsei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48
3.4
Ask sei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52
SÔndesmoi
55
4.1
Orismo
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
4.2
Epimeristiko sÔndesmoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
3
4 4.3
SÔndesmoi kai kleistìthta . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
4.4
Arjrwto, hmiarjrwto kai gewmetriko sÔndesmoi . . . . . . . . . . . . . . .
65
4.5
Gewmetriko sÔndesmoi kai mhtroeid . . . . . . . . . . . . . . . . . . . . . . .
68
4.6
Stoiqei¸dei idiìthte mhtroeid¸n . . . . . . . . . . . . . . . . . . . . . . . .
71
4.7
Hmiepimeristiko sÔndesmoi kai kurtè gewmetre . . . . . . . . . . . . . . . .
77
4.8
Ask sei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83
Keflaio
Arqikè
1
'Ennoie
Oi merikè diatxei enai dimele sqèsei pou apolambnoun trei basikè idiìthte , thn anaklastik idiìthta, thn antisummetra kai th metabatikìthta. Oi dimele autè sqèsei sunant¸ntai kai pazoun shmantikì rìlo se èna eurÔtato fsma twn sÔgqronwn majhmatik¸n. Sto keflaio autì eisgoume thn ènnoia th merik ditaxh se èna sÔnolo kaj¸ kai aut n tou isomorfismoÔ dÔo merik¸ diatetagmènwn sunìlwn. Akìmh, dnoume paradegmata kai perigrfoume basikoÔ trìpou me tou opoou mporoÔme na kataskeusoume nèe (pio sÔnjete ) merikè diatxei apì ma perissìtere dosmène diatxei . Ja qrhsimopoi soume tou ex sumbolismoÔ :
∅: to kenì sÔnolo N = {1, 2, . . .}: to sÔnolo twn fusik¸n arijm¸n Z: to sÔnolo twn akerawn Z≥0 = {0, 1, . . .}: to sÔnolo twn mh arnhtik¸n akerawn Q: to sÔnolo twn rht¸n R: to sÔnolo twn pragmatik¸n [n]: to sÔnolo {1, 2, . . . , n} #S : o plhjrijmo tou sunìlou S . 1.1
Apeikonsei kai sqèsei isodunama
JewroÔme gnwstè basikè ènnoie th jewra sunìlwn, ìpw aut tou egkleismoÔ sunìlwn A ⊆ B , tou kartesianoÔ ginomènou (peperasmènou pl jou ) sunìlwn, th apeikìnish 5
6 sunìlwn kai th sÔnjesh apeikonsewn kai grfoume A ⊂ B , ìtan A ⊆ B kai apokleetai h isìthta. Gia apeikìnish sunìlwn f : A → B kai y ∈ B sumbolzoume me
◦ f (A) = {f (x) : x ∈ A} kai me ◦ f −1 (y) = {x ∈ A : f (x) = y}, antstoiqa, thn eikìna tou A kai thn antstrofh eikìna tou y ∈ B (mèsw th f ) kai upenjumzoume ìti f (A) ⊆ B kai f −1 (y) ⊆ A . H apeikìnish f : A → B lègetai
◦ ènrriyh ( 1 1 enrriptik apeikìnish) an #f −1 (y) ≤ 1 gia kje y ∈ B , ◦ eprriyh ( ep epirriptik apeikìnish) an #f −1 (y) ≥ 1 gia kje y ∈ B , ◦ amfrriyh ( 1 1 kai ep amfirriptik apeikìnish) an #f −1 (y) = 1 gia kje y ∈ B . Paradeigma. An A = {a, b, c, d}, ìpou a, b, c, d enai diaforetik an dÔo stoiqea tou A, kai B = {1, 2, 3}, tìte h apeikìnish f : A → B me f (a) = 2, f (b) = 3 kai f (c) = f (d) = 1 enai eprriyh all den enai ènrriyh, diìti to f −1 (1) = {c, d} èqei dÔo stoiqea. ✷
H epìmenh basik prìtash jewretai gnwst . Prìtash 1.1.1
'Estw f : A → B apeikìnish peperasmènwn sunìlwn.
(i) An h f enai ènrriyh tìte #A ≤ #B . (ii) An h f enai eprriyh tìte #A ≥ #B . (iii) An h f enai amfrriyh tìte #A = #B .
✷
Dimel sqèsh se èna sÔnolo S lègetai èna uposÔnolo R tou kartesianoÔ ginomènou S × S . Gia a, b ∈ S grfoume a R b an (a, b) ∈ R kai lème ìti to a sqetzetai me to b w pro th dimel sqèsh R. H ènnoia th dimeloÔ sqèsh sto S genikeÔei thn ènnoia th apeikìnish f : S → S , me thn opoa kje stoiqeo a tou S sqetzetai me akrib¸ èna stoiqeo tou S , to b = f (a). Mia shmantik kathgora dimel¸n sqèsewn enai oi sqèsei isodunama . H ènnoia th sqèsh isodunama sto S enai sten sundedemènh me aut n th diamèrish tou sunìlou S. 'Estw sÔnolo S . Onomzoume diamèrish ( merismì) tou S èna sÔnolo π = {B1 , B2 , . . . , Bk } mh ken¸n uposunìlwn tou S pou an dÔo enai xèna metaxÔ tou kai h ènws tou enai sh me S . Ta uposÔnola Bi lègontai mèrh th diamèrish π . Orismì 1.1.1
7 To π = {{1, 5, 9}, {2, 8}, {7}, {3, 4, 6}} enai diamèrish tou [9]. Grfoume π = 159/28/7/346, ìpou h seir me thn opoa anagrfontai ta mèrh th π ìpw kai h seir me thn opoa anagrfontai ta stoiqea se kje mèro th π , den èqei shmasa. ✷ Paradeigma.
'Estw π = {B1 , B2 , . . . , Bk } diamèrish tou S . JewroÔme th dimel sqèsh ≡π sto S pou orzetai w ex : gia x, y ∈ S èqoume x ≡π y an ta x kai y an koun sto dio mèro Bi th π . H sqèsh aut èqei profan¸ ti epìmene trei basikè idiìthte :
(i) a ≡π a (anaklastik ), (ii) an a ≡π b, tìte b ≡π a (summetrik ), (iii) an a ≡π b kai b ≡π c, tìte a ≡π c (metabatik ) gia ìla ta a, b, c ∈ S . An S = [9] kai π = {{1, 5, 9}, {2, 8}, {7}, {3, 4, 6}}, tìte 1 ≡π 5, 5 ≡π 9, 1 ≡π 9, 2 ≡π 8, 7 ≡π 7 klp. ✷
Paradeigma.
Mia dimel sqèsh, èstw ≡, sto sÔnolo S lègetai sqèsh isodunama (equivalence relation) an gia ìla ta a, b, c ∈ S isqÔoun ta ex :
Orismì 1.1.2
(i) a ≡ a, (ii) an a ≡ b, tìte b ≡ a, (iii) an a ≡ b kai b ≡ c, tìte a ≡ c. Lème ìti to a enai isodÔnamo me to b (w pro th sqèsh isodunama ≡) an a ≡ b. 'Wste gia kje diamèrish π tou S h ≡π enai sqèsh isodunama sto S . Antstrofa, kje sqèsh isodunama ≡ sto S orzei mia diamèrish π tou S gia thn opoa oi ≡π kai ≡ tautzontai. Pio sugkekrimèna, klsh isodunama tou a ∈ S lègetai to uposÔnolo
Ca = {x ∈ S : x ≡ a} tou S pou apoteletai apì ìla ta isodÔnama me to a stoiqea tou S . 'Eqoume a ≡ a kai sunep¸ a ∈ Ca gia kje a ∈ S , pou shmanei ìti oi klsei isodunama enai mh kenè kai h ènws tou enai to sÔnolo S . Epsh oi klsei Ca kai Cb enai xène metaxÔ tou ektì an Ca = Cb . Prgmati, an Ca ∩ Cb 6= ∅ tìte uprqei c ∈ Ca ∩ Cb , opìte c ≡ a kai c ≡ b. Apì ti sqèsei autè , exaita th summetrik kai th metabatik idiìthta th sqèsh ≡ èqoume a ≡ b. 'Estw t¸ra tuqao x ∈ Ca . Apì ti x ≡ a kai a ≡ b parnoume x ≡ b, dhlad
8 ìti x ∈ Cb . Dexame ìti Ca ⊆ Cb kai anloga apodeiknÔoume ìti Cb ⊆ Ca , ra Ca = Cb . Sumperanoume ìti ta diakekrimèna apì ta sÔnola Ca gia a ∈ S apoteloÔn diamèrish π tou S , ta mèrh th opoa enai oi klsei isodunama th ≡, opìte h sqèsh ≡π tautzetai me thn ≡. Paradeigma. An S = {a, b, c} kai ≡ enai h dimel sqèsh {(a, a), (b, b), (c, c), (a, b), (b, a)} sto S , tìte h ≡ enai sqèsh isodunama me dÔo klsei isodunama Ca = Cb = {a, b} kai Cc = {c}. ✷
1.2
Merikè diatxei kai isomorfismo
Me ton akìloujo orismì eisgoume thn ènnoia th merik ditaxh . Mia dimel sqèsh, èstw ≤, sto sÔnolo P lègetai merik ditaxh (partial order) an gia ìla ta a, b, c ∈ P isqÔoun ta ex :
Orismì 1.2.1
(i) a ≤ a, (ii) an a ≤ b kai b ≤ a, tìte a = b, (iii) an a ≤ b kai b ≤ c, tìte a ≤ c. H idiìthta (ii) lègetai antisummetra. To zeÔgo (P, ≤) lègetai merik¸ diatetagmèno sÔnolo kai sumbolzetai aploÔstera me P ìtan h merik ditaxh ≤ enai eunìhth. 'Otan anaferìmaste se èna merik¸ diatetagmèno sÔnolo P ja sumbolzoume th merik ditaxh tou P me ≤ me ≤P . Gia lìgou suntoma , ja qrhsimopoioÔme suqn ton ìro {merik ditaxh} ant gia {merik¸ diatetagmèno sÔnolo}. Ta stoiqea a, b tou P lègontai sugkrsima an a ≤ b b ≤ a. Grfoume a < b (kai b > a) an a ≤ b kai a 6= b. Lème ìti to b kalÔptei to a ( ìti to zeÔgo (a, b) h sqèsh a < b enai sqèsh kluyh ), an a < b kai den uprqei x ∈ P me a < x < b. An to P enai peperasmèno, tìte to (P, ≤) apeikonzetai me to digramma Hasse, to opoo perièqei ta stoiqea tou P w korufè kai mia akm pou na sundèei ta a kai b gia kje sqèsh kluyh (a, b) sto P , me to b na emfanzetai yhlìtera apì to a. Sto Sq ma 1.1 apeikonzontai ta diagrmmata Hasse dÔo merik¸n diatxewn sta sÔnola P = {a, b, c, d} kai Q = {a, b, c, d, e}. Sthn pr¸th èqoume ti sqèsei kluyh a < b, c < b kai c < d kai sth deÔterh ti a < b, b < d, d < e, a < c kai c < e. Sthn perptwsh tou Q parathroÔme ìti oi a < d, a < e kai b < e den enai sqèsei kluyh kai sunep¸ den uprqoun oi antstoiqe akmè sto digramma. Oi akmè autè ja apoteloÔsan Paradeigma.
9 e b
d d b
a
c
c a P
Q
Sq ma 1.1: DÔo merik¸ diatetagmèna sÔnola. kat kpoio trìpo pleonasmì afoÔ, gia pardeigma, apì ti akmè metaxÔ twn a, b kai b, d prokÔptei ìti a < b kai b < d kai sunep¸ ìti a < d apì th metabatik idiìthta. Ta {a, c}, {a, d} kai {b, d} enai zeÔgh mh sugkrsimwn stoiqewn sto P , ìpw kai ta {b, c} kai {c, d} sto Q. ✷ A exetsoume t¸ra kai lla paradegmata merik¸n diatxewn. H fusik ditaxh ≤Z twn akerawn enai merik ditaxh sto Z, kaj¸ kai se opoiod pote uposÔnolo tou Z (oi idiìthte tou OrismoÔ 1.2.1 sthn perptwsh aut jewroÔntai gnwstè ). Sth ditaxh aut (thn opoa sumbolzoume aploÔstera me ≤ ìtan pisteÔoume ìti den uprqei knduno sÔgqhsh ) opoiad pote dÔo stoiqea tou Z enai sugkrsima. Mia merik ditaxh me aut thn idiìthta lègetai olik diatxh grammik diatxh alusda. Gia pardeigma, uprqoun dÔo alusde sto sÔnolo {1, 2}, h 1 < 2 kai h 2 < 1. Genikìtera (Prìtash 2.1.1), kje olik ditaxh se èna sÔnolo P me n stoiqea enai th morf σ1 < σ2 < · · · < σn (dhlad isqÔei x ≤ y sto P an kai mìno an x = σi kai y = σj me i ≤Z j ) gia kpoia apì ti n! metajèsei (σ1 , σ2 , . . . , σn ) tou P . Diagrmmata Hasse alusdwn me tra kai tèssera stoiqea apeikonzontai sto tèlo th pr¸th kai trth seir tou Sq mato 1.4. ✷ Pardeigma 1.2.1
'Estw sÔnolo P kai h dimel sqèsh ≤ h opoa orzetai jètonta a ≤ b, gia a, b ∈ P , an a = b. H sqèsh aut enai profan¸ merik ditaxh sto P , lègetai antialusda kai apotele th monadik merik ditaxh sto P sthn opoa den uprqoun diakekrimèna sugkrsima (metaxÔ tou ) stoiqea tou P . Diagrmmata Hasse antialusdwn me tra kai tèssera stoiqea apeikonzontai sthn arq th pr¸th kai deÔterh seir tou Sq mato 1.4. ✷ Pardeigma 1.2.2
'Estw Bn to dunamosÔnolo (sÔnolo ìlwn twn uposunìlwn) tou [n] me th dimel sqèsh ≤ tou egkleismoÔ, dhlad me S ≤ T an S ⊆ T gia S, T ⊆ [n]. Oi trei idiìthte Pardeigma 1.2.3
10 tou OrismoÔ 1.2.1 enai fanerè ìpou h antisummetra, p.q., isoduname me to gegonì ìti an S ⊆ T kai T ⊆ S gia S, T ⊆ [n], tìte S = T . Sunep¸ h ≤ enai merik ditaxh sto Bn . Me aut th merik ditaxh to sÔnolo Bn lègetai lgebra Boole txh n. To digramma Hasse tou Bn apeikonzetai sto Sq ma 1.2 (a) gia n = 3. Isqurizìmaste t¸ra ìti sthn lgebra Boole Bn , to T kalÔptei to S an kai mìno an S ⊆ T kai #T = #S + 1. Upojètoume pr¸ta ìti to T kalÔptei to S . Tìte S < T , opìte S ⊆ T kai #T ≥ #S + 1. An eqame #T > #S + 1 tìte ja up rqan toulqiston dÔo diaforetik stoiqea a, b tou T − S kai ja eqame S ⊂ S ∪ {a} ⊂ T . Sunep¸ ja sque S < S ∪ {a} < T sto Bn kai h S < T den tan sqèsh kluyh . H antfash aut ma odhge sto sumpèrasma ìti #T = #S + 1. Antstrofa an S ⊆ T kai #T = #S + 1 tìte enai fanerì ìti S ⊂ T kai ìti den uprqei sÔnolo R me S ⊂ R ⊂ T , dhlad ìti to T kalÔptei to S . ✷
{1,2,3}
12
{1,2}
{1,3}
{2,3}
{1}
{2}
{3}
{}
(a)
6
4
3
2 1
(b)
Sq ma 1.2: Oi merikè diatxei B3 kai D12 . H sqèsh tou egkleismoÔ mpore na oriste pnw se tuqaa sullog A uposunìlwn enì dosmènou sunìlou, jètonta S ≤ T gia S, T ∈ A an S ⊆ T . H sqèsh aut apotele merik ditaxh sto A. Endiafèronta paradegmata merik¸n diatxewn autoÔ tou edou emfanzontai se afjona sthn lgebra kai th gewmetra kai perilambnoun th merik ditaxh (tou egkleismoÔ) sto sÔnolo twn grammik¸n upìqwrwn enì dianusmatikoÔ q¸rou, sto sÔnolo twn upoomdwn mia omda (me idiaterh shmasa gia th jewra Galois), sto sÔnolo twn pr¸twn idewd¸n enì antimetajetikoÔ daktulou (me idiaterh shmasa sth metajetik lgebra) kai sto sÔnolo twn pleur¸n enì kurtoÔ poluèdrou ( poluedrikoÔ sumplègmato ). Shmantikì pardeigma enai epsh h {merik ditaxh twn idewd¸n}, pou ja Parat rhsh 1.2.1
11 melet soume sti Paragrfou 3.2 kai 4.2, kaj¸ kai aut twn {kleist¸n sunìlwn} mia ✷ prxh kleistìthta , pou ja eisgoume sthn Pargrafo 4.3. 'Estw h dimel sqèsh | sto sÔnolo N twn jetik¸n akerawn me a | b an o b diairetai me to a, dhlad an uprqei s ∈ N me b = as. H sqèsh aut enai merik ditaxh sto N. Prgmati, h anaklastik idiìthta enai faner . Gia thn antisummetra, parathroÔme ìti an a | b kai b | a, tìte a ≤Z b kai b ≤Z a kai sunep¸ a = b. Gia th metabatikìthta, parathroÔme ìti an a | b kai b | c, tìte uprqoun s, t ∈ N me b = as kai c = bt, opìte c = ast = aq me q = st ∈ N kai sunep¸ a | c. Se aut th merik ditaxh oi akèraioi pou kalÔptoun to 1 (to elqisto stoiqeo th ditaxh ) enai auto pou den èqoun diairèth llo apì to 1 kai ton eautì tou , dhlad oi pr¸toi arijmo. Genikìtera to b kalÔptei to a sth merik ditaxh | an kai mìno an b = ap gia kpoio pr¸to arijmì p. ✷ Pardeigma 1.2.4
'Estw n ∈ N kai èstw Dn to sÔnolo twn jetik¸n diairet¸n tou n me th sqèsh th diairetìthta tou Paradegmato 1.2.4, dhlad me a | b sto Dn an o b diairetai me to a. H sqèsh aut sto Dn enai merik ditaxh afoÔ, ìpw èqoume dh dexei, oi idiìthte tou OrismoÔ 1.2.1 isqÔoun sto megalÔtero sÔnolo N. To digramma Hasse tou Dn apeikonzetai sto Sq ma 1.2 (b) gia n = 12. ✷ Pardeigma 1.2.5
Gia n ∈ N èstw Πn to sÔnolo twn diamersewn tou sunìlou [n]. Gia π, σ ∈ Πn jètoume π ≤ σ an kje mèro th diamèrish π perièqetai se kpoio mèro th diamèrish σ . Sthn perptwsh aut , lème ìti h π enai eklèptunsh th σ . An p.q. n = 9, π = 159/28/7/346 kai σ = 1579/23468, tìte π ≤ σ . H sqèsh ≤ kajist to Πn merik¸ diatetagmèno sÔnolo, to opoo anafèretai w to sÔnolo twn diamersewn tou [n] me merik ditaxh thn eklèptunsh. Gia na epalhjeÔsoume thn antisummetra (oi lle dÔo idiìthte enai fanerè ) parathroÔme ìti an π ≤ σ , tìte h σ èqei to polÔ tìsa mèrh ìsa kai h π . Epomènw an π ≤ σ kai σ ≤ π tìte h σ èqei akrib¸ tìsa mèrh ìsa kai h π en¸ kje mèro th π perièqetai se kpoio mèro th σ , opìte anagkastik π = σ . ParathroÔme epsh ìti isqÔei 0ˆ ≤ π ≤ 1ˆ gia kje π ∈ Πn , ìpou 0ˆ enai h diamèrish tou [n] ìla ta mèrh th opoa èqoun èna stoiqeo kai ˆ1 enai h diamèrish tou [n] me èna mìno mèro . Epiplèon h σ kalÔptei thn π sto Πn an kai mìno an h σ prokÔptei apì thn π en¸nonta dÔo diaforetik mèrh th π se èna kai af nonta ta upìloipa mèrh ametblhta. Gia n = 9, p.q. h π = 159/28/7/346 kalÔptetai, metaxÔ llwn, apì ti diamersei 1579/28/346 kai 159/278/346. To digramma Hasse tou Πn apeikonzetai sto Sq ma 1.3 gia n = 3. ✷ Pardeigma 1.2.6
Prwtarqik shmasa enai h ènnoia tou isomorfismoÔ merik¸ diatetagmènwn sunìlwn.
12 123
12/3
13/2
23/1
1/2/3
Sq ma 1.3: H merik ditaxh Π3 . DÔo merik¸ diatetagmèna sÔnola (P, ≤P ) kai (Q, ≤Q ) lègontai isìmorfa an uprqei amfrriyh f : P → Q ¸ste gia x, y ∈ P na isqÔei x ≤P y an kai mìno an f (x) ≤Q f (y). Mia tètoia amfrriyh f lègetai isomorfismì merik¸ diatetagmènwn sunìlwn. Orismì 1.2.2
(i) 'Estw P = {a, b}, Q = {1, 2} kai f : P → Q, me f (a) = 1, f (b) = 2. An ta P, Q enai merik¸ diatetagmèna kai isqÔei 1 < 2 sto Q, tìte h f enai isomorfismì an kai mìno an isqÔei a < b sto P . Ta P kai Q den enai isìmorfa an ta a, b den enai sugkrsima sto P . Pardeigma 1.2.7
(ii) H apeikìnish f : B2 → D6 me f (∅) = 1, f ({1}) = 2, f ({2}) = 3 kai f ({1, 2}) = 6 enai isomorfismì merik¸ diatetagmènwn sunìlwn, ìpw enai epsh kai h g : B2 → D6 me g(∅) = 1, g({1}) = 3, g({2}) = 2 kai g({1, 2}) = 6. (iii) Opoiesd pote dÔo alusde P kai Q me n stoiqea enai isìmorfe . Prgmati, èqoume σ1 < σ2 < · · · < σn sto P kai τ1 < τ2 < · · · < τn sto Q gia kpoie metajèsei (σ1 , σ2 , . . . , σn ) kai (τ1 , τ2 , . . . , τn ) twn sunlown P kai Q (Prìtash 2.1.1) kai h apeikìnish f : P → Q me f (σi ) = τi gia 1 ≤ i ≤ n enai o zhtoÔmeno isomorfismì . (iv) 'Estw 2P to dunamosÔnolo enì sunìlou P me n stoiqea. Efodiasmèno me th merik ditaxh tou egkleismoÔ, to 2P enai isìmorfo me thn lgebra Boole Bn (giat?). ✷ H tautotik apeikìnish iP : P → P , h antstrofh apeikìnish f −1 : Q → P enì isomorfismoÔ f : P → Q kai h sÔnjesh g ◦ f : P → R dÔo isomorfism¸n f : P → Q kai g : Q → R enai ìle isomorfismo merik¸n diatxewn. ProkÔptei ìti h sqèsh isomorfismoÔ enai sqèsh isodunama sto sÔnolo twn merik¸n diatxewn. H klsh isodunama tou P lègetai tÔpo isomorfismoÔ tou P .
13
Sq ma 1.4: Oi merikè diatxei se 3 kai 4 stoiqea. Uprqei èna tÔpo isomorfismoÔ merik¸n diatxewn me èna stoiqeo kai dÔo tÔpoi gia merikè diatxei me dÔo stoiqea. Sto Sq ma 1.4 apeikonzontai ta diagrmmata Hasse twn pènte anisìmorfwn merik¸n diatxewn me 3 stoiqea kai twn dekaèxi me 4 stoiqea. ✷ Paradeigma.
Suneqzoume me merikoÔ akìmh basikoÔ orismoÔ . 'Estw (P, ≤) merik¸ diatetagmèno sÔnolo kai a ∈ P . To a lègetai elaqistikì an den uprqei x ∈ P me x < a, megistikì an den uprqei x ∈ P me x > a, elqisto an a ≤ x gia kje x ∈ P kai mègisto an a ≥ x gia kje x ∈ P . ParathroÔme ìti to P mpore na èqei to polÔ èna elqisto stoiqeo kai to polÔ èna mègisto stoiqeo. Prgmati, an ta a, b tan kai ta dÔo elqista ( kai ta dÔo mègista) stoiqea, tìte ja eqame a ≤ b kai b ≤ a, ra ja eqame kai a = b lìgw th antisummetra . ParathroÔme akìmh ìti kje elqisto ( mègisto) stoiqeo (an uprqei) enai elaqistikì (megistikì) kai ìti to antstrofo den enai genik alhjè . Gia ti merikè diatxei tou Sq mato 1.1, to P èqei dÔo elaqistik stoiqea kai dÔo megistik en¸ to Q èqei elqisto kai mègisto stoiqeo. Sth merik ditaxh Bn to kenì sÔnolo ∅ enai to elqisto stoiqeo kai to [n] to mègisto stoiqeo, diìti isqÔei ∅ ⊆ S ⊆ [n] gia kje S ∈ Bn . Sth merik ditaxh tou Paradegmato 1.2.4 o akèraio 1 enai to elqisto stoiqeo en¸ den uprqoun megistik ( mègista) stoiqea. H merik ditaxh Dn èqei elqisto stoiqeo to 1 kai mègisto stoiqeo to n. ✷ Paradeigma.
14 Gia kje peperasmèno merik¸ diatetagmèno sÔnolo (P, ≤) kai kje x ∈ P uprqei elaqistikì stoiqeo a ∈ P kai megistikì stoiqeo b ∈ P me a ≤ x ≤ b. Eidikìtera, kje mh ken peperasmènh merik ditaxh èqei toulqiston èna elaqistikì kai toulqiston èna megistikì stoiqeo. L mma 1.2.1
Apìdeixh. ApodeiknÔoume thn Ôparxh elaqistikoÔ stoiqeou. 'Estw ìti den uprqei elaqistikì stoiqeo a tou P me a ≤ x. Tìte to x den enai elaqistikì kai sunep¸ uprqei x1 ∈ P me x > x1 . To x1 epsh den enai elaqistikì kai sunep¸ uprqei x2 ∈ P me x1 > x2 . Epanalambnonta to dio epiqerhma brskoume mia peirh akolouja x = x0 > x1 > x2 > · · · stoiqewn tou P . Efìson to P enai peperasmèno oi ìroi th akolouja aut den mpore na enai ìloi an dÔo diaforetiko. Me lla lìgia uprqoun dekte i < j me xi = xj . Apì th metabatikìthta kai ti sqèsei xi > xi+1 > · · · > xj = xi prokÔptei ìti xi > xi+1 kai xi+1 ≥ xi , sqèsei pou antibanoun sthn antisummetra. To zhtoÔmeno èpetai. Anloga apodeiknÔetai kai h Ôparxh megistikoÔ stoiqeou b ≥ x. ✷ 1.3
Prxei se merikè diatxei
A exetsoume kpoiou basikoÔ trìpou na kataskeusei kane nèe merikè diatxei apì gnwstè . 'Estw merik¸ diatetagmèno sÔnolo P . Gia kje uposÔnolo Q tou P o periorismì ≤Q th sqèsh ≤P sto Q × Q enai merik ditaxh sto Q. 'Etsi gia x, y ∈ Q èqoume x ≤Q y an kai mìno an x ≤P y sto P . H ≤Q onomzetai epagìmenh merik ditaxh sto Q kai to zeÔgo (Q, ≤Q ) enai to epagìmeno merik¸ diatetagmèno uposÔnolo tou P sto Q. Gia x, y ∈ P me x ≤P y orzoume to uposÔnolo [x, y] = {z ∈ P : x ≤P z ≤P y} tou P . To sÔnolo autì, efodiasmèno me thn epagìmenh merik ditaxh, lègetai kleistì disthma sto P (me kra x kai y ). Omow orzetai to anoiktì disthma (x, y) = {z ∈ P : x
· · · > ajm+1 . Gia pardeigma, an m = n = 2 kai A = (1, 0, 2, 0, 1), dhlad a1 = 1, a2 = 0, a3 = 2, a4 = 0, a5 = 1, tìte uprqei h aÔxousa upoakolouja a2 ≤ a4 ≤ a5 th A m kou 3. Pardeigma 2.3.1
5 3
4
1
2
Sq ma 2.1: Mia merik ditaxh sto [5]. JewroÔme to zeÔgo (P, ✂), ìpou P = [mn + 1] kai i ✂ j an kai mìno an i ≤ j kai ai ≤ aj . EÔkola blèpei kane ìti h sqèsh ✂ enai merik ditaxh sto sÔnolo P . To digramma Hasse aut th merik ditaxh dnetai sto Sq ma 2.1 gia thn perptwsh A = (1, 0, 2, 0, 1). Apì to Pìrisma 2.3.1 gnwrzoume ìti to P èqei alusda ai1 ✁ ai2 ✁ · · · ✁ ain+1 antialusda {aj1 , aj2 , . . . , ajm+1 } me j1 < j2 < · · · < jm+1 . Sthn pr¸th perptwsh èqoume i1 < i2 < · · · < in+1 kai ai1 ≤ ai2 ≤ · · · ≤ ain+1 kai sth deÔterh j1 < j2 < · · · < jm+1
31 kai aj1 > aj2 > · · · > ajm+1 . Parathr ste ìti sto pardeigma A = (1, 0, 2, 0, 1) h alusda 2 ✁ 4 ✁ 5 orzei thn aÔxousa upoakolouja a2 ≤ a4 ≤ a5 . ✷ 'Estw sÔnola A1 , A2 , . . . , An . Upì poie sunj ke uprqoun diaforetik an dÔo stoiqea x1 , x2 , . . . , xn th ènwsh twn Ai ¸ste xi ∈ Ai gia kje 1 ≤ i ≤ n? Mia tètoia akolouja (x1 , x2 , . . . , xn ) lègetai SÔsthma Diakekrimènwn Antipros¸pwn (SDA) gia ta A1 , A2 , . . . , An . To prìblhma th Ôparxh SDA lègetai kai prìblhma tou gmou lìgw th ex ermhnea . An A1 , A2 , . . . , An enai ta sÔnola twn gunaik¸n pou gnwrzoun n ndre y1 , y2 , . . . , yn , antstoiqa, tìte èna SDA (x1 , x2 , . . . , xn ) gia ta A1 , A2 , . . . , An antistoiqe se èna zeugrwma kje ndra yi me mia gunaka xi pou gnwrzei. Efarmog :
to Je¸rhma tou
Gmou.
H akolouja x1 = 2, x2 = 4, x3 = 3, x4 = 5, x5 = 1 apotele SDA gia ta sÔnola A1 = {1, 2, 3}, A2 = {2, 4, 5}, A3 = {3}, A4 = {1, 5} kai A5 = {1, 4}, afoÔ xi ∈ Ai gia kje 1 ≤ i ≤ 5. To antstoiqo zeugrwma apeikonzetai sto Sq ma 2.2, sto opoo gia 1 ≤ i, j ≤ 5 ta Ai kai j sundèontai me akm an j ∈ Ai . ✷ Paradeigma.
A1
1
A2
2
A3
3
A4
4
A5
5
Sq ma 2.2: 'Ena SÔsthma Diakekrimènwn Antipros¸pwn. Paradeigma. Ta B1 = {1, 3}, B2 = {1, 3}, B3 = {1, 2, 3, 4} kai B4 = {1, 3} den èqoun SDA, diìti h ènwsh B1 ∪ B2 ∪ B4 èqei mìno dÔo stoiqea kai sunep¸ den enai dunatì na epilegoÔn diaforetik an dÔo stoiqea x1 ∈ B1 , x2 ∈ B2 , x4 ∈ B4 . ✷
Mia èndeixh th isqÔo tou Jewr mato 2.3.1 enai h apìdeixh tou paraktw jewr mato , gnwstoÔ kai w Je¸rhma tou Gmou. (Hall, 1935) Ta sÔnola A1 , A2 , . . . , An èqoun SDA an kai mìno an gia kje 1 ≤ r ≤ n h ènwsh opoiond pote r apì ta sÔnola aut èqei toulqiston r stoiqea, dhlad an kai mìno an # (Ai1 ∪ Ai2 ∪ · · · ∪ Air ) ≥ r (2.2)
Je¸rhma 2.3.2
32 gia kje epilog deikt¸n 1 ≤ i1 < · · · < ir ≤ n. Apìdeixh. An ta A1 , A2 , . . . , An èqoun SDA x1 , x2 , . . . , xn , tìte h (2.2) isqÔei profan¸ diìti to sÔnolo Ai1 ∪ Ai2 ∪ · · · ∪ Air perièqei ta diakekrimèna stoiqea xi1 , xi2 , . . . , xir . Antstrofa, èstw ìti h sunj kh tou Jewr mato isqÔei kai èstw ìti A1 ∪ A2 ∪ · · · ∪ An = {b1 , b2 , . . . , bm }. Orzoume ma merik ditaxh ≤P sto sÔnolo P = {A1 , A2 , . . . , An , b1 , b2 , . . . , bm } sthn opoa ta A1 , A2 , . . . , An enai megistik stoiqea, ta b1 , b2 , . . . , bm enai elaqistik kai bj
ρ(x ∧ y) kaj¸ kai gia kje zeÔgo u, v ∈ L me ρ(u∧v) = ρ(x∧y) kai ρ(u)+ρ(v) < ρ(x)+ρ(y). Profan¸ h (4.5) isqÔei an x = y kai prokÔptei apì th sunj kh th prìtash an ta x, y kalÔptoun to x ∧ y . A upojèsoume loipìn ìti to x den kalÔptei to x ∧ y (h perptwsh kat thn opoa to y den kalÔptei to x ∧ y enai ìmoia) kai èstw x′ ∈ L me x∧y < x′ < x. ParathroÔme ìti x′ ∧y = x∧y kai ρ(x′ ) < ρ(x) opìte, apì thn upìjesh th epagwg , prokÔptei ìti
ρ(x′ ) + ρ(y) ≥ ρ(x′ ∨ y) + ρ(x ∧ y).
(4.6)
ParathroÔme epsh ìti oi sqèsei x > x′ kai x′ ∨ y ≥ x′ sto L dnoun x ∧ (x′ ∨ y) ≥ x′ > x ∧ y sto L kai sunep¸
ρ(x) + ρ(x′ ∨ y) ≥ ρ(x ∨ x′ ∨ y) + ρ(x ∧ (x′ ∨ y)),
(4.7)
apì thn upìjesh th epagwg . Prosjètonta kat mèlh ti (4.6) kai (4.7) kai parathr¸nta ìti x ∨ x′ ∨ y ≥ x ∨ y kai x′ ≤ x ∧ (x′ ∨ y) sto L, h (4.5) èpetai. ✷
67 'Ena peperasmèno merik¸ diatetagmèno sÔnolo P lègetai (nw) hmiarjrwtì an gia tuqaa diakekrimèna stoiqea x, y tou P , ta opoa kalÔptoun kpoio stoiqeo tou P , uprqei stoiqeo tou P to opoo kalÔptei ta x kai y kai olik hmiarjrwtì (totally semimodular) an to P èqei mègisto kai elqisto stoiqeo kai kje kleistì disthma sto P enai hmiarjrwtì. Apì thn Prìtash 4.4.1 prokÔptei ìti gia peperasmènou sundèsmou o parapnw orismì th hmiarjrwsimìthta sumfwne me autìn tou OrismoÔ 4.4.1. ✷ Parat rhsh 4.4.1
Apì thn Prìtash 4.4.1 kai to qarakthrismì twn sqèsewn kluyh tou sundèsmou Πn twn diamersewn tou [n] (Pardeigma 1.2.6) prokÔptei ìti o Πn enai hmiarjrwtì . Oi leptomèreie af nontai ston anagn¸sth. ✷ Pardeigma 4.4.1
Se mia merik ditaxh P me elqisto stoiqeo ˆ0 ta stoiqea pou kalÔptoun to ˆ0 lègontai toma. Orismì 4.4.2
'Estw peperasmèno sÔndesmo L me elqisto stoiqeo ˆ0.
(i) O L lègetai atomikì sÔndesmo an kje stoiqeo tou L − {ˆ0} enai sÔndesh atìmwn tou L. (ii) O L lègetai gewmetrikì sÔndesmo an enai atomikì kai hmiarjrwtì . Se kje peperasmèno sÔndesmo L ta toma enai angwga stoiqea, me thn ènnoia pou d¸same ston ìro {angwgo stoiqeo} sthn Pargrafo 4.2. O sÔndesmo L enai atomikì an kai mìno an ta toma enai ta mìna angwga stoiqea tou. ✷
Parathrhsh.
Paradeigma.
(i) Mia alusda m kou n enai atomikì sÔndesmo an kai mìno an n ≤ 1.
(ii) H merik ditaxh Bn enai atomikì sÔndesmo , diìti ta toma th Bn enai ta monosÔnola {i} me i ∈ [n] kai kje mh kenì uposÔnolo tou [n] grfetai w ènwsh monosunìlwn. Epomènw h Bn enai gewmetrikì sÔndesmo . (iii) O sÔndesmo Πn enai atomikì . Prgmati, ta toma tou Πn enai oi diamersei tou [n] oi opoe èqoun èna mèro me dÔo stoiqea kai ta upìloipa mèrh tou (anagkastik n − 2 se pl jo ) monosÔnola. Epiplèon, kje σ ∈ Πn enai h sÔndesh twn atìmwn π tou Πn me π ≤ σ . Epomènw (èqonta upìyh to Pardeigma 4.4.1) to Πn enai gewmetrikì sÔndesmo . (iv) O sÔndesmo tou Sq mato 4.4 enai gewmetrikì .
✷
Oi gewmetriko sÔndesmoi (ii) - (iv) tou prohgoÔmenou paradegmato enai ìloi th morf L(S) gia kpoio peperasmèno sÔnolo dianusmtwn S kai thn prxh kleistìthta tou Paradegmato 4.3.1 pnw se autì. Sthn epìmenh pargrafo ja dexoume ìti ìloi oi sÔndesmoi
68 aut th morf enai gewmetriko, gegonì to opoo exhge thn orologa {gewmetrikì sÔndesmo }. 4.5
Gewmetriko sÔndesmoi kai mhtroeid
Arqzoume aut thn pargrafo me ton orismì th ènnoia tou mhtroeidoÔ . 'Estw prxh kleistìthta se peperasmèno sÔnolo S , mèsw th opoa h eikìna tou A ⊆ S sumbolzetai me A. To S efodiasmèno me thn prxh aut lègetai mhtroeidè (matroid) an isqÔei Orismì 4.5.1
(iv) p ∈ / A, p ∈ A ∪ {q} ⇒ q ∈ A ∪ {p} gia ìla ta p, q ∈ S kai kje A ⊆ S . To mhtroeidè autì lègetai aplì an epiplèon isqÔei
(v) ∅ = ∅ kai {p} = {p} gia kje p ∈ S . To axwma (iv) lègetai axwma th antallag (exchange axiom) kai apotele thn krsimh idiìthta pou knei ti prxei kleistìthta , ti opoe orsame pnw se peperasmèna sÔnola dianusmtwn sto Pardeigma 4.3.1, na xeqwrzoun apì lle . 'Estw S peperasmèno uposÔnolo enì grammikoÔ q¸rou V pnw sto s¸ma K. H prxh kleistìthta tou Paradegmato 4.3.1 pnw sto S orzei mhtroeidè sto S , to opoo enai aplì an kai mìno an ta stoiqea tou S enai mh mhdenik kai dÔo opoiad pote apì aut enai grammik¸ anexrthta. L mma 4.5.1
Apìdeixh. Gia ton pr¸to isqurismì, prèpei na epalhjeÔsoume to axwma th antallag . 'Estw A = {v1 , v2 , . . . , vk } ⊆ S kai p, q ∈ S . An p ∈ A ∪ {q} kai p ∈ / A, tìte èqoume
p = c1 v1 + c2 v2 + · · · + ck vk + cq gia kpoia c1 , . . . , ck , c ∈ K me c 6= 0. Apì thn teleutaa isìthta prokÔptei ìti q = 1c (p − c1 v1 − · · · − ck vk ) kai ra q ∈ A ∪ {p}. O deÔtero isqurismì enai fanerì . ✷ 'Ena mhtroeidè pnw sto sÔnolo S ja sumbolzetai me M(S). Ta kleist sÔnola sto M(S) lègontai kai eppeda (flats) kai o sÔndesmo L(S) twn kleist¸n sunìlwn lègetai kai sÔndesmo twn epipèdwn (lattice of flats) tou M(S). To akìloujo je¸rhma enai to kÔrio apotèlesma aut th paragrfou kai dhl¸nei ìti oi ènnoie tou gewmetrikoÔ sundèsmou kai tou mhtroeidoÔ enai kat kpoio trìpo isodÔname .
69 Je¸rhma 4.5.1
(Birkhoff-Whitney)
(i) Gia kje mhtroeidè M(S) h merik ditaxh L(S) twn epipèdwn tou M(S) apotele gewmetrikì sÔndesmo. (ii) Kje peperasmèno gewmetrikì sÔndesmo L me sÔnolo atìmwn S enai isìmorfo me to sÔndesmo twn epipèdwn enì aploÔ mhtroeidoÔ pnw sto S . To mhtroeidè autì orzetai apì thn (4.3), dhlad jètonta _ A = {p ∈ S : p ≤ A} gia A ⊆ S .
To akìloujo l mma ja qrhsimopoihje sthn apìdeixh tou mèrou (i) tou jewr mato . 'Estw mhtroeidè M pnw sto sÔnolo S . Gia A, B ∈ L(S) to B kalÔptei to A an kai mìno an B = A ∪ {p} gia kpoio p ∈ S me p ∈ / A.
L mma 4.5.2
Apìdeixh. Upojètoume pr¸ta ìti to B kalÔptei to A (opìte A ⊂ B ) kai jewroÔme p ∈ B −A. 'Eqoume A ⊂ A∪{p} ⊆ B kai, efarmìzonta to L mma 4.3.1 (ii), parnoume A < A ∪ {p} ≤ B sto L(S). 'Epetai ìti B = A ∪ {p}. Antstrofa, èstw A, B ∈ L(S) me B = A ∪ {p} kai p ∈ S − A. Upojètonta ìti A ⊂ C ⊆ B gia kpoio C ∈ L(S), arke na dexoume ìti C = B . 'Estw q ∈ C − A. Apì ti sqèsei q ∈ A ∪ {p}, q ∈ / A = A kai to axwma th antallag prokÔptei ìti p ∈ A ∪ {q}. 'Omw A ∪ {q} ⊆ C kai sunep¸ A ∪ {q} ⊆ C apì to L mma 4.3.1 (ii), opìte p ∈ C . 'Ara A ∪ {p} ⊆ C kai sunep¸ , exaita tou diou l mmato èqoume B = A ∪ {p} ⊆ C . 'Epetai ìti B = C , ìpw to jèlame. ✷ Apìdeixh tou Jewr mato 4.5.1 (i). Gnwrzoume apì thn Prìtash 4.3.1 ìti to L(S) enai sÔndesmo . Apì to L mma 4.5.2 gnwrzoume epsh ìti ta toma tou L(S) enai ta sÔnola th / ∅. Gia A ∈ L(S) èqoume morf {p} me p ∈
A =
[
{a}
(4.8)
a∈A
(giat?). Apì thn Prìtash 4.3.1 to dexiì mèlo th (4.8) enai so me th sÔndesh sto L(S) twn {a} me a ∈ A. 'Epetai ìti o sÔndesmo L(S) enai atomikì . Mènei na dexoume ìti o L(S) enai kai hmiarjrwtì . Apì thn Prìtash 4.4.1 arke na dexoume ìti an ta x, y kalÔptoun to x ∧ y sto L(S), tìte to x ∨ y kalÔptei ta x, y . SÔmfwna me to L mma 4.5.2 mporoÔme na
70 upojèsoume ìti x ∧ y = A ∈ L(S), x = A ∪ {p} kai y = A ∪ {q} me p, q ∈ S − A. Apì ti idiìthte (i) - (iii) tou OrismoÔ 4.3.1 kai thn Prìtash 4.3.1 brskoume ìti
x ∨ y = x ∪ y = A ∪ {p, q} = x ∪ {q} = y ∪ {p}. Profan¸ ta x, y den enai sugkrsima sto L(S) kai sunep¸ p ∈ / y kai q ∈ / x. Apì ti prohgoÔmene isìthte kai to L mma 4.5.2 prokÔptei ìti to x ∨ y kalÔptei ta x, y . ✷ An S enai peperasmèno uposÔnolo enì grammikoÔ q¸rou V pnw sto s¸ma K, tìte h merik ditaxh L(S) twn kleist¸n sunìlwn, w pro thn prxh kleistìthta tou Paradegmato 4.3.1 pnw sto S , enai gewmetrikì sÔndesmo . Pìrisma 4.5.1
Apìdeixh. Sunduzoume to Je¸rhma 4.5.1 (i) me to L mma 4.5.1.
✷
Oi gewmetriko sÔndesmoi Bn kai Πn enai isìmorfoi me sundèsmou th morf L(S), ìpw sto Pìrisma 4.5.1. Prgmati, an S enai bsh (grammik anexrthto uposÔnolo me n stoiqea) tou grammikoÔ q¸rou Rn , tìte kje uposÔnolo tou S enai kleistì kai to L(S) apoteletai apì ìla ta merik¸ diatetagmèna me th sqèsh tou egkleismoÔ uposÔnola tou S . Sunep¸ enai isìmorfo me to Bn . Isqurizìmaste epsh ìti an {e1 , e2 , . . . , en } enai bsh tou Rn kai S = {ei − ej : 1 ≤ i < j ≤ n}, tìte to L(S) enai isìmorfo me to Πn (ja apodexoume mia genikìterh prìtash sthn Pargrafo 4.6). ✷ Parathrhsh.
Sto Sq ma 4.5 apeikonzetai èna gewmetrikì sÔndesmo txh 3 me sÔnolo atìmwn S = {a, b, c, d}. Me thn prxh pou orzei h (4.3), èqoume {a, b} = {a, c} = {b, c} = {a, b, c}, {a, d} = {a, d}, {b, d} = {b, d}, {c, d} = {c, d} kai {a, b, d} = {a, c, d} = {b, c, d} = {a, b, c, d}. ✷ Paradeigma.
Apìdeixh tou Jewr mato 4.5.1 (ii). Ja dexoume pr¸ta ìti h (4.3) orzei èna aplì mhtroeidè sto sÔnolo S twn atìmwn tou L. ParathroÔme ìti to S sumpptei me to sÔnolo twn angwgwn stoiqewn tou L, ìpw autì orsthke sthn Pargrafo 4.2. Sunep¸ to ìti ta axi¸mata (i) - (iii) tou OrismoÔ 4.3.1 isqÔoun prokÔptei apì thn Prìtash 4.3.2. Gia to (iv) (axwma th antallag ), upenjumzoume ìti o gewmetrikì sÔndesmo L enai diabajmismèno . 'Estw ρ(y) W h txh tou y ∈ L kai èstw A ⊆ S , p, q ∈ S me p ∈ / A kai p ∈ A ∪ {q}. Jètonta x = A èqoume p 6≤ x kai p ≤ x ∨ q . Apì thn (4.5) èqoume
ρ(x ∨ q) ≤ ρ(x) + ρ(q) − ρ(x ∧ q) ≤ ρ(x) + 1.
71 1
a
b
c
d
0
Sq ma 4.5: 'Ena gewmetrikì sÔndesmo me tèssera toma. Apì ti upojèsei ma isqÔei x < x ∨ p ≤ x ∨ p ∨ q = x ∨ q kai sunep¸
ρ(x) + 1 ≤ ρ(x ∨ p) ≤ ρ(x ∨ p ∨ q) = ρ(x ∨ q) ≤ ρ(x) + 1. Upoqrewtik loipìn isqÔei pantoÔ h isìthta. H sqèsh ρ(x ∨ p) = ρ(x ∨ p ∨ q) dnei x ∨ p = x ∨ p ∨ q kai sunep¸ q ≤ x ∨ p, dhlad q ∈ A ∪ {p}, ìpw to jèlame. To axwma (v) tou OrismoÔ 4.3.1 enai fanerì. To ìti o sÔndesmo L enai isìmorfo me to sÔndesmo L(S), twn kleist¸n sunìlwn tou mhtroeidoÔ pou orsame, prokÔptei epsh apì thn Prìtash 4.3.2. ✷
4.6
Stoiqei¸dei idiìthte mhtroeid¸n
H jewra twn mhtroeid¸n parèqei èna kajar sunduastikì plasio sto opoo mporoÔn na melethjoÔn oi ènnoie th grammik exrthsh kai anexarthsa peperasmènou pl jou stoiqewn (dianusmtwn) enì grammikoÔ q¸rou. Pollè apì ti ènnoie kai kataskeuè pou sunant kane sth jewra aut proèrqontai apì (kai genikeÔoun katllhla) antstoiqe ènnoie kai kataskeuè sth jewra twn grafhmtwn. Sthn pargrafo aut dnoume kpoiou apì tou pio basikoÔ orismoÔ kai idiìthte twn mhtroeid¸n kai sth sunèqeia, ant na proqwr soume perissìtero me th stoiqei¸dh jewra tou (enallaktik sust mata axiwmtwn, diagraf kai sustol , du¨ikìthta klp), perigrfoume ta mhtroeid pou orzontai apì graf mata. 'Estw mhtroeidè M pnw sto sÔnolo S kai A ⊆ S . To A lègetai anexrthto an p ∈ / A − {p} gia kje p ∈ A (opìte to A = ∅ enai anexrthto) kai pargon an A = S . An to A enai tautìqrona anexrthto kai pargon, tìte lègetai bsh tou M . 'Ena elaqistikì
72 exarthmèno (dhlad ìqi anexrthto) uposÔnolo tou S lègetai kÔklwma. Ja sumbolzoume (pio swst) me L(M) to sÔndesmo L(S) twn epipèdwn tou M . Apì to Je¸rhma 4.5.1 (i) gnwrzoume ìti o sÔndesmo L(M) enai diabajmismèno . H txh tou lègetai txh tou M . Ta stoiqea tou L(M) txh 1 kai 2 lègontai shmea kai eujee tou M , antstoiqa. Sto Sq ma 4.6 apeikonzetai èna aplì mhtroeidè F txh 3 me ept shmea kai ept eujee , to legìmeno eppedo tou Fano. 'Etsi o sÔndesmo twn epipèdwn L(F ) apoteletai apì to kenì sÔnolo, ta ept shmea, ti ept eujee kai to sÔnolo S twn ept shmewn, merik¸ diatetagmèna me th sqèsh tou egkleismoÔ. H kleist j kh tou A ⊆ S orzetai apì thn (4.3). Sto pardeigma autì kje eujea èqei tra shmea kai apotele kÔklwma tou F en¸ bsh enai kje sÔnolo tri¸n mh suneujeiak¸n shmewn. Af netai ston anagn¸sth na epalhjeÔsei ìti to F enai isìmorfo me to mhtroeidè pou orzoun ta ept dianÔsmata tou tridistatou grammikoÔ q¸rou F32 , pnw sto s¸ma F2 = {0, 1} me dÔo stoiqea, pou fanontai sto sq ma. Shmei¸noume ìti uprqoun mhtroeid pou den mporoÔn na prokÔyoun w mhtroeid dianusmtwn grammikoÔ q¸rou pnw se s¸ma K, gia kanèna K. ✷ Paradeigma.
100
110
101 111
010
011
001
Sq ma 4.6: To eppedo tou Fano. Oi epìmene protsei genikeÔoun gnwstè protsei th grammik lgebra . L mma 4.6.1
'Estw mhtroeidè M pnw sto sÔnolo S .
(i) An A ⊆ B ⊆ S kai to B enai anexrthto, tìte to A enai epsh anexrthto. (ii) 'Estw ìti to A ⊆ S enai anexrthto kai p ∈ S − A. Tìte to A ∪ {p} enai anexrthto an kai mìno an p ∈ / A.
73 Apìdeixh. (i) 'Estw ìti to B ⊆ S enai anexrthto kai A ⊆ B . 'Estw tuqao p ∈ A, opìte kai p ∈ B . Epeid to B enai anexrthto èqoume p ∈ / B − {p}. Akìmh A − {p} ⊆ B − {p} kai sunep¸ A − {p} ⊆ B − {p}, opìte p ∈ / A − {p}. 'Eqoume dexei ìti p ∈ / A − {p} gia kje p ∈ A kai epomènw , to A enai anexrthto.
(ii) Upojètoume pr¸ta ìti to sÔnolo A ∪ {p} enai anexrthto. Tìte, sÔmfwna me ton orismì / (A ∪ {p}) − {p}, dhlad p ∈ / A. Upojèsoume t¸ra ìti p ∈ /A th anexarthsa , èqoume p ∈ kai jewroÔme q ∈ A ∪ {p}. Ja dexoume ìti q ∈ / (A ∪ {p}) − {q}. Prgmati, autì enai isodÔnamo me thn upìjesh p ∈ / A an q = p. 'Estw q 6= p, opìte apì th sqèsh aut kai thn q ∈ A ∪ {p} èqoume q ∈ A. Exaita th anexarthsa tou A, èqoume q ∈ / A − {q}. Apì th sqèsh aut prokÔptei ìti q ∈ / (A − {q}) ∪ {p} diìti, an eqame q ∈ (A − {q}) ∪ {p}, tìte sÔmfwna me to axwma th antallag , ja eqame kai p ∈ (A − {q}) ∪ {q} = A, se antfash me thn upìjesh p ∈ / A. Sunep¸ q ∈ / (A − {q}) ∪ {p} = (A ∪ {p}) − {q}, ìpw to jèlame. Sumperanoume ìti to A ∪ {p} enai anexrthto. ✷ Prìtash 4.6.1
'Estw mhtroeidè M pnw sto sÔnolo S .
(i) Kje anexrthto uposÔnolo tou S mpore na epektaje se bsh tou M . (ii) Kje pargon uposÔnolo tou S perièqei toulqiston ma bsh tou M . (iii) 'Ole oi bsei tou M perièqoun r stoiqea, ìpou r enai h txh tou M . Apìdeixh. (i) 'Estw anexrthto A ⊆ S . An to A den enai bsh, tìte uprqei p ∈ S me p ∈ / A. Apì to L mma 4.6.1 (ii) prokÔptei ìti to A ∪ {p} enai anexrthto. Suneqzoume na prosjètoume, an autì enai aparathto, sto A ∪ {p} stoiqea me ton dio trìpo èw ìtou ftsoume se bsh tou M .
(ii) 'Estw A ⊆ S me A = S . An to A den enai bsh, tìte den enai anexrthto kai sunep¸ uprqei p ∈ A me A − {p} = A, opìte A − {p} = S . Suneqzoume na afairoÔme, an autì enai aparathto, stoiqea apì to A − {p} me ton dio trìpo èw ìtou ftsoume se bsh tou M . (iii) An B = {p1 , p2 , . . . , pm } enai bsh tou M , tìte apì to L mma 4.5.2 prokÔptei ìti h ∅ ⊂ {p1 } ⊂ {p1 , p2 } ⊂ · · · ⊂ {p1 , p2 , . . . , pm } = S enai megistik alusda tou sundèsmou twn epipèdwn L(M). Epomènw to m ko m th alusda enai so me thn txh tou M . ✷ 'Estw V sÔnolo me n stoiqea. 'Ena aplì grfhma sto sÔnolo koruf¸n V enai èna zeÔgo G = (V, E), ìpou E enai uposÔnolo tou sunìlou V2
Mhtroeid
apì
graf mata.
74 twn uposunìlwn tou V me dÔo stoiqea (ja jewr soume mìno apl graf mata se ìti akolouje gia lìgou aplìthta ). Ta stoiqea twn V kai E lègontai korufè kai akmè tou G, antstoiqa. Gia U ⊆ V to epagìmeno upogrfhma tou G sto sÔnolo koruf¸n U enai to zeÔgo GU = (U, EU ) me EU = E ∩ U2 , en¸ gia A ⊆ E sumbolzoume me GA to grfhma (V, A). Lème ìti dÔo korufè a, b ∈ V sundèontai sto G an uprqoun m ≥ 0 kai {u0 , u1}, {u1 , u2}, . . . , {um−1 , um } ∈ E ¸ste u0 = a kai um = b (jewr¸nta m = 0, parathroÔme ìti kje koruf sundèetai me ton eautì th ). H sqèsh th sÔndesh metaxÔ koruf¸n enai sqèsh isodunama sto V . Ta epagìmena upograf mata tou G sti klsei isodunama th sqèsh aut lègontai sunektikè sunist¸se tou G. To G lègetai sunektikì an èqei ma kai mìno sunektik sunist¸sa, dhlad an opoiesd pote dÔo korufè tou sundèontai sto G.
a
d
b
c
Sq ma 4.7: 'Ena aplì grfhma me tèsseri korufè . Sto Sq ma 4.7 apeikonzetai èna aplì grfhma sto sÔnolo koruf¸n V = {a, b, c, d} me akmè {a, b}, {a, c}, {a, d}, {b, c} kai {c, d}. To epagìmeno upogrfhma tou G sto sÔnolo koruf¸n U = {b, d} enai to grfhma me korufè b, d qwr akm . ✷ Paradeigma.
'Estw G = (V, E) ìpw prohgoumènw , me V = {v1 , v2 , . . . , vn } kai èstw {e1 , e2 , . . . , en } mia dosmènh bsh tou grammikoÔ q¸rou Rn . JewroÔme to uposÔnolo
S = {ei − ej : 1 ≤ i < j ≤ n, {vi , vj } ∈ E}
(4.9)
tou Rn kai parathroÔme ìti h apeikìnish φ : E → S me φ({vi , vj }) = ei − ej enai amfrriyh. 'Estw M(S) to aplì mhtroeidè pnw se kpoio sÔnolo S dianusmtwn tou Rn pou orzetai apì to Pardeigma 4.3.1 (blèpe L mma 4.5.1). Orzoume to aplì mhtroeidè MG pnw sto sÔnolo E jètonta A = B sto MG gia A ⊆ E , an φ(A) = φ(B) sto M(S). Me lla lìgia, qrhsimopoioÔme thn amfrriyh φ gia na metafèroume th dom tou mhtroeidoÔ M(S) apì to S sto E . H dom tou mhtroeidoÔ MG kajorzetai apì to G mèsw gnwst¸n ennoi¸n th jewra grafhmtwn, ti opoe upenjumzoume sÔntoma sto shmeo autì. To grfhma G lègetai kÔklwma m kou r an E = {{u1 , u2}, {u2, u3 }, . . . , {ur−1, ur }, {ur , u1 }} gia kpoie diakekrimène
75 korufè u1 , u2, . . . , ur ∈ V me r ≥ 3. To G lègetai dso an den perièqei kÔklwma (w upogrfhma th morf GA me A ⊆ E ). IsodÔnama, to G enai dso an èqei to polÔ n − 1 akmè kai akrib¸ n − #E sunektikè sunist¸se . To G lègetai dèndro (Sq ma 4.8) an enai sunektikì dso , isodÔnama, an enai sunektikì kai èqei akrib¸ n − 1 akmè . Kje sunektik sunist¸sa enì dsou G enai dèndro, w epagìmeno upogrfhma tou G. To grfhma G tou Sq mato 4.7 enai sunektikì kai perièqei dÔo kukl¸mata m kou 3 kai èna m kou 4. To upogrfhma GA enai dèndro gia 8 (akrib¸ ) sÔnola A ⊆ E , ìla me tra stoiqea, ìpw p.q. ta A1 = {{a, b}, {a, c}, {c, d}} kai A2 = {{a, c}, {b, c}, {c, d}}. To GA enai dso an kai mìno an enai dèndro isqÔei #A ≤ 2. ✷ Paradeigma.
Sq ma 4.8: 'Ena dèndro me dekapènte korufè . 'Estw aplì grfhma G = (V, E) sto sÔnolo koruf¸n V = {v1 , v2 , . . . , vn } me k sunektikè sunist¸se kai èstw MG to antstoiqo mhtroeidè . Prìtash 4.6.2
(i) Gia A ⊆ E kai {vi , vj } ∈ E èqoume {vi , vj } ∈ A sto MG an kai mìno an oi korufè vi kai vj an koun sthn dia sunektik sunist¸sa tou GA . Eidikìtera, isqÔei A ∈ L(MG ) an kai mìno an to A perièqei kje akm tou G ta kra th opoa an koun sthn dia sunektik sunist¸sa tou GA . (ii) To A ⊆ E enai anexrthto sto MG an kai mìno an to grfhma GA enai dso . (iii) To A ⊆ E enai kÔklwma sto MG an kai mìno an to grfhma GA enai kÔklwma. (iv) To A ⊆ E enai pargon sto MG an kai mìno an to GA èqei k sunektikè sunist¸se . (v) To A ⊆ E enai bsh tou MG an kai mìno an to grfhma GA enai dso me k sunektikè sunist¸se . Eidikìtera, h txh tou MG enai sh me n − k kai an to G enai sunektikì, tìte to A ⊆ E enai bsh tou MG an kai mìno an to grfhma GA enai dèndro.
76 Apìdeixh. 'Estw to sÔnolo twn dianusmtwn S , ìpw sthn (4.9).
(i) 'Estw ìti ta vi kai vj an koun sthn dia sunektik sunist¸sa tou GA , opìte uprqei m ≥ 1 kai akmè {vi0 , vi1 }, {vi1 , vi2 }, . . . , {vim−1 , vim } ∈ A me i0 = i kai im = j . Tìte to dinusma ei − ej enai so me to jroisma twn stoiqewn eir − eir+1 gia 0 ≤ r ≤ m − 1 tou φ(A) kai sunep¸ an kei sth grammik j kh tou φ(A) ston Rn . Sumperanoume ìti ei − ej ∈ φ(A) sto M(S), pou shmanei ìti {vi , vj } ∈ A sto MG . Antstrofa, èstw ìti {vi , vj } ∈ A kai èstw W h grammik j kh tou φ(A) ston Rn , opìte ei − ej ∈ W . Enai stoiqei¸de na dexei kane ìti o grammikì q¸ro phlko Rn /W èqei distash sh me to pl jo twn sunektik¸n sunistws¸n tou GA kai ìti mia bsh tou q¸rou autoÔ apoteletai apì ti eikìne twn dianusmtwn er (upì th fusik probol Rn → Rn /W ) gia r ∈ I , ìpou ta vr gia r ∈ I apoteloÔn epilog mia koruf gia kje sunektik sunist¸sa tou GA . Efìson oi eikìne twn ei kai ej enai se sto q¸ro phlko, upoqrewtik ta vi kai vj na an koun sthn dia sunektik sunist¸sa tou GA . (ii) Apì ton orismì th anexarthsa kai thn (i) èqoume ìti to A ⊆ E enai anexrthto sto MG an kai mìno an gia kje a = {vi , vj } ∈ A ta vi kai vj den an koun sthn dia sunektik sunist¸sa tou GA−{a} . Autì sumbanei an kai mìno an to G den perièqei kÔklwma, dhlad an kai mìno an to G enai dso . (iii) ProkÔptei mesa apì to (ii). (iv) Apì to sqetikì orismì kai thn (i) èqoume ìti to A ⊆ E enai pargon sto MG an kai mìno an gia kje {vi , vj } ∈ E ta vi kai vj an koun sthn dia sunektik sunist¸sa tou GA , pou shmanei ìti kje sunektik sunist¸sa tou G paramènei sunektik pern¸nta sto upogrfhma GA . (v) O pr¸to isqurismì prokÔptei mesa apì ti (ii) kai (iv). Gia to deÔtero, upenjumzoume ìti kje dso me n korufè kai k sunektikè sunist¸se èqei n − k akmè . ✷ P¸ mpore na perigrafe o sÔndesmo twn epipèdwn tou MG apì to grfhma G? 'Estw aplì grfhma G = (V, E). Mia diamèrish π tou sunìlou V lègetai sunektik an gia kje mèro B th π to epagìmeno upogrfhma GB tou G enai sunektikì. Orismì 4.6.1
To sÔnolo twn sunektik¸n diamersewn tou G, efodiasmèno me th merik ditaxh th eklèptunsh (dhlad me π ≤ σ an kje mèro th π perièqetai se kpoio mèro th σ ), lègetai sÔndesmo twn sustol¸n (lattice of contractions) tou G kai sumbolzetai me LG . An G enai to grfhma tou Sq mato 4.7, tìte to LG èqei elqisto stoiqeo th diamèrish tou V se tèssera monosÔnola, mègisto stoiqeo th diamèrish tou V se èna mìno mèro , 5 toma ta opoa enai diamersei tou V se èna disÔnolo kai dÔo monosÔnola Paradeigma.
77 kai antistoiqoÔn sti 5 akmè tou G kai 6 akìmh stoiqea. Af netai ston anagn¸sth na epalhjeÔsei ìti to LG enai isìmorfo me to gewmetrikì sÔndesmo tou Sq mato 4.4. ✷ Gia kje grfhma G = (V, E) to LG èqei elqisto stoiqeo th diamèrish tou V se monosÔnola kai mègisto stoiqeo th diamèrish tou V sti sunektikè sunist¸se tou G. H akìloujh prìtash dnei perissìtere plhrofore gia th dom tou LG . O sÔndesmo L(MG ) twn epipèdwn tou MG enai isìmorfo me th merik ditaxh LG . Eidikìtera to LG enai gewmetrikì sÔndesmo txh n − k , ìpou n kai k enai to pl jo twn koruf¸n kai twn sunektik¸n sunistws¸n tou G, antstoiqa. Prìtash 4.6.3
Apìdeixh. Gia A ∈ L(MG ) èstw f (A) h diamèrish tou V , ta mèrh th opoa enai ta sÔnola koruf¸n twn sunektik¸n sunistws¸n tou GA . Enai fanerì ìti f (A) ∈ LG kai ìti h apeikìnish f : L(MG ) → LG diathre th ditaxh. Gia π ∈ LG èstw A = g(π) to sÔnolo ìlwn twn akm¸n {vi , vj } ∈ E gia ti opoe ta vi kai vj an koun sto dio mèro th π . Apì thn Prìtash 4.6.2 (i) èqoume A = A, opìte h g : LG → L(MG ) enai kal orismènh kai profan¸ diathre th ditaxh. Tèlo parathroÔme ìti g(f (A)) = A gia kje A ∈ L(MG ) apì thn Prìtash 4.6.2 (i) kai ìti f (g(π)) = π gia kje π ∈ LG . 'Epetai ìti h f enai isomorfismì merik¸n diatxewn me antstrofo th g . O teleutao isqurismì th prìtash prokÔptei apì to Pìrisma 4.5.1 kai thn Prìtash 4.6.2 (v). ✷ H klsh twn gewmetrik¸n sundèsmwn LG perièqei ti Bn kai Πn gia kje n ∈ N. An G = (V, V2 ) enai to pl re grfhma sto sÔnolo koruf¸n V = [n], tìte kje diamèrish tou [n] enai sunektik kai sunep¸ LG = Πn . Epsh an G enai to grfhma sto sÔnolo koruf¸n V = {0, 1, . . . , n} me ti n akmè {0, 1}, {0, 2}, . . . , {0, n}, tìte to LG enai isìmorfo me th Bn . Prgmati, oi sunektikè diamersei tou G enai akrib¸ oi diamersei πS , ìpou S ⊆ [n], pou apoteloÔntai apì to mèro {0} ∪ S , kai ta monosÔnola {i} gia i ∈ [n] − S kai h apeikìnish f : Bn → LG me f (S) = πS enai isomorfismì merik¸n diatxewn. 'Epetai ìti oi Bn kai Πn enai gewmetriko sÔndesmoi. ✷ Parat rhsh 4.6.1
4.7
Hmiepimeristiko sÔndesmoi kai kurtè gewmetre
Sthn paroÔsa pargrafo orzoume ti ènnoie tou hmiepimeristikoÔ sundèsmou kai th kurt gewmetra kai apodeiknÔoume ìti autè susqetzontai kat trìpo anlogo me ekenon pou susqetzontai oi ènnoie tou gewmetrikoÔ sundèsmou kai tou mhtroeidoÔ . Arqzoume me ti kurtè gewmetre .
78 'Estw prxh kleistìthta se peperasmèno sÔnolo S , mèsw th opoa h eikìna tou A ⊆ S sumbolzetai me A. To S efodiasmèno me thn prxh aut lègetai kurt gewmetra (convex geometry) an isqÔei Orismì 4.7.1
(iv′ ) p, q ∈ / A, p 6= q , p ∈ A ∪ {q} ⇒ q ∈ / A ∪ {p} gia ìla ta p, q ∈ S kai kje A ⊆ S . Sthn perptwsh aut ta kleist uposÔnola tou S lègontai epsh kurt uposÔnola. Oi prxei kleistìthta twn Paradeigmtwn 4.3.2 kai 4.3.3 dnoun dÔo basik paradegmata kurt¸n gewmetri¸n. 'Estw P peperasmèno merik¸ diatetagmèno sÔnolo. H prxh kleistìthta tou Paradegmato 4.3.2, h opoa apeikonzei to A ⊆ P sto ide¸de A = A− tou P pou pargei to A, orzei kurt gewmetra sto P . Gia na epalhjeÔsoume to axwma (iv′ ) èstw p, q ∈ P kai A ⊆ P me p, q ∈ / A, p 6= q kai p ∈ A ∪ {q}. 'Eqoume p ≤ a gia kpoio a ∈ A ∪ {q}. Efìson p ∈ / A ja prèpei a = q , dhlad p ≤ q . Omow an sque q ∈ A ∪ {p} tìte q ≤ p, opìte anagkastik p = q , se antjesh me ti upojèsei ma gia ta p, q . 'Ara q ∈ / A ∪ {p}. Me thn prxh aut ta kleist uposÔnola tou P enai ta ide¸dh tou P kai sunep¸ o sÔndesmo L(P ) enai o epimeristikì sÔndesmo J(P ) twn idewd¸n tou P pou melet same sti Paragrfou 3.2 kai 4.2. ✷ Pardeigma 4.7.1
'Estw S peperasmèno uposÔnolo tou Rd . Ja dexoume ìti h prxh kleistìthta tou Paradegmato 4.3.3 orzei kurt gewmetra sto S , dhlad ìti isqÔei to axwma (iv′ ). 'Estw A = conv(A) ∩ S gia A ⊆ S (ìpw sto Pardeigma 4.3.3) kai èstw p, q ∈ S kai A ⊆ S me p, q ∈ / A, p 6= q , p ∈ A ∪ {q} kai q ∈ A ∪ {p}. Jèloume na katal xoume se antfash. Apì ti sqèsei p ∈ A ∪ {q} kai q ∈ A ∪ {p} èqoume Pardeigma 4.7.2
p = q =
λq + (1 − λ)a µp + (1 − µ)b
(4.10)
me 0 ≤ λ, µ ≤ 1 kai a, b ∈ conv(A). H upìjesh p 6= q dnei λ, µ < 1. Apalefonta to q apì ti (4.10) prokÔptei ìti (1 − λ)a + λ(1 − µ)b p = . 1 − λµ H parstash sto dexiì mèlo aut th isìthta enai kurtì sunduasmì twn a kai b kai sunep¸ p ∈ conv({a, b}) ⊆ conv(A), opìte p ∈ conv(A) ∩ S = A, se antjesh me ti upojèsei ma . Sto pardeigma autì ofeletai h orologa {kurt gewmetra} tou OrismoÔ 4.7.1. ✷
79 Sto Sq ma 4.9 apeikonzetai èna sÔnolo S = {a, b, c} tri¸n shmewn sto R kai o antstoiqo sÔndesmo L(S) twn kurt¸n uposunìlwn tou S . ParathroÔme ìti o sÔndesmo L(S) den enai epimeristikì . ✷
Paradeigma.
{a,b,c} {a,b}
a
b S
c
{a}
{b,c}
{b}
{c}
{}
L(S)
Sq ma 4.9: O sÔndesmo twn kurt¸n sunìlwn mia kurt gewmetra . Sthn Pargrafo 4.5 edame ìti èna peperasmèno sÔndesmo L enai isìmorfo me to sÔndesmo twn epipèdwn enì mhtroeidoÔ an kai mìno an o L enai gewmetrikì . Ja doÔme ìti parìmoio qarakthrismì uprqei kai gia tou sundèsmou twn kurt¸n sunìlwn mia kurt gewmetra . Apì to Pardeigma 4.7.1 kai to Je¸rhma 4.2.1 kaj¸ kai apì to pardeigma tou Sq mato 4.9, prokÔptei ìti h kathgora aut¸n twn sundèsmwn perièqei gn sia ìlou tou peperasmènou epimeristikoÔ sundèsmou . O peperasmèno sÔndesmo L lègetai hmiepimeristikì (meet-distributive) an kje disthma th morf [x, y] sto L, ìpou x enai h sunnthsh twn stoiqewn tou L pou kalÔptoun to y , enai isìmorfo me mia lgebra Boole. Orismì 4.7.2
Paradeigma.
tikì ).
(i) O sÔndesmo tou Sq mato 4.9 enai hmiepimeristikì (all ìqi epimeris-
(ii) Qrhsimopoi¸nta to Je¸rhma 4.2.1 mpore kane na dexei ìti kje peperasmèno epimeristikì sÔndesmo enai hmiepimeristikì . O isqurismì autì enai eidik perptwsh th mia kateÔjunsh tou Jewr mato 4.7.1 pou akolouje. ✷ To akìloujo je¸rhma enai to kÔrio apotèlesma aut th paragrfou.
80 (Edelman, 1980) 'Ena peperasmèno sÔndesmo L enai isìmorfo me to sÔndesmo twn kurt¸n sunìlwn mia kurt gewmetra an kai mìno an o L enai hmiepimeristikì . Je¸rhma 4.7.1
'Estw kurt gewmetra pnw sto sÔnolo S kai A, B ∈ L(S). To B kalÔptei to A sto L(S) an kai mìno an B = A ∪ {p} gia kpoio p ∈ S − A. L mma 4.7.1
Apìdeixh. 'Estw ìti to B kalÔptei to A sto L(S) kai èstw p ∈ B − A. Apì th sqèsh A ⊂ A ∪ {p} ⊆ B èqoume A ⊂ A ∪ {p} ⊆ B kai sunep¸ A ∪ {p} = B . A upojèsoume ìti A ∪ {p} ⊂ B , me q ∈ B , q ∈ / A ∪ {p}. Efarmìzonta to axwma (iv′ ) sth sqèsh q ∈ A ∪ {p} prokÔptei ìti p ∈ / A ∪ {q} kai sunep¸ A ⊂ A ∪ {q} ⊂ B , opìte h A ⊂ B den enai sqèsh kluyh sto L(S). H antfash aut odhge sto sumpèrasma ìti B = A∪{p}. To antstrofo enai fanerì. ✷ To akìloujo pìrisma apodeiknÔei th mia apì ti dÔo kateujÔnsei tou Jewr mato 4.7.1. Pìrisma 4.7.1
hmiepimeristikì .
O sÔndesmo twn kurt¸n sunìlwn mia kurt gewmetra pnw sto S enai
Apìdeixh. 'Estw X, Y ∈ L(S) me X = Y1 ∧ Y2 ∧ · · · ∧ Yk , ìpou Y1 , Y2 , . . . , Yk enai ta stoiqea tou L(S) pou kalÔptontai apì to Y . Apì to L mma 4.7.1 èqoume Yi = Y − {qi } gia 1 ≤ i ≤ k , ìpou ta qi enai diakekrimèna an dÔo stoiqea tou Y kai apì thn Prìtash 4.3.1 isqÔei X = Y1 ∩ Y2 ∩ · · · ∩ Yk = Y − {q1 , q2 , . . . , qk }. Epiplèon, kje uposÔnolo Z tou S me X ⊆ Z ⊆ Y enai so me thn tom , ra kai me th sunnthsh sto L(S) kpoiwn apì ta Yi (sugkekrimèna twn Yi me qi ∈ / Z ). Eidikìtera Z ∈ L(S). 'Epetai ìti to disthma [X, Y ] sto L(S) apoteletai apì ìla ta sÔnola Z me X ⊆ Z ⊆ Y kai ìti h apeikìnish f : [X, Y ] → 2Y −X me f (Z) = Z − X enai isomorfismì apì to [X, Y ] sthn lgebra Boole txh k twn uposunìlwn tou Y − X = {q1 , q2 , . . . , qk }. ✷ Prin asqolhjoÔme me thn antstrofh kateÔjunsh ja exgoume kpoia akìmh sumpersmata gia tou sundèsmou L(S). O sÔndesmo twn kurt¸n sunìlwn mia kurt gewmetra pnw sto S enai diabajmismèno txh #S .
Pìrisma 4.7.2
Apìdeixh. ProkÔptei mesa apì to L mma 4.7.1 kai to gegonì ìti to L(S) èqei mègisto stoiqeo to S kai elqisto stoiqeo to kenì sÔnolo. ✷
81 'Opw sthn perptwsh twn mhtroeid¸n (Pargrafo 4.6), to A ⊆ S lègetai anexrthto an p∈ / A − {p} gia kje p ∈ A. ParathroÔme ìti ta anexrthta sÔnola sthn kurt gewmetra tou Paradegmato 4.3.2 enai akrib¸ oi antialusde th merik ditaxh P , en¸ se aut tou Paradegmato 4.3.3 enai ta uposÔnola tou shmeiosunìlou S pou brskontai se kurt jèsh. Epsh to A ⊆ S lègetai pargon uposÔnolo tou K ∈ L(S) an A = K . H epìmenh prìtash genikeÔei thn ex prìtash: Kje ide¸de se peperasmènh merik ditaxh P pargetai apì monadik antialusda th P . Kje kurtì sÔnolo K ∈ L(S) mia kurt gewmetra pnw sto S èqei monadikì anexrthto pargon uposÔnolo.
Prìtash 4.7.1
Apìdeixh. H Ôparxh anexrthtou pargonto uposunìlou tou K prokÔptei apì thn apìdeixh th Prìtash 4.6.1 (ii), h opoa den qrhsimopoie to axwma th antallag . Gia th monadikìthta, èstw ìti A kai B enai anexrthta pargonta uposÔnola tou K . Ja dexoume ìti A = B . 'Estw tuqao p ∈ A kai B0 elaqistikì uposÔnolo tou B me (A − {p}) ∪ B0 = K (tètoio uposÔnolo uprqei diìti (A − {p}) ∪ B = K ). To B0 enai mh kenì afoÔ to A enai anexrthto. 'Estw loipìn q ∈ B0 . Jètonta C = (A − {p}) ∪ (B0 − {q}) èqoume C ⊂ K , apì thn kataskeu tou B0 kai C ∪ {p} = C ∪ {q} = K , opìte
p ∈ C ∪ {q},
q ∈ C ∪ {p}.
Epiplèon p ∈ / C kai q ∈ / C , diìti alli¸ ja eqame A ⊆ C (A − {p}) ∪ B0 ⊆ C kai epomènw C = K . Apì to axwma (iv′ ) prokÔptei ìti p = q . Sunep¸ kje p ∈ A enai stoiqeo tou B , dhlad A ⊆ B . Omow B ⊆ A. ✷ Sthn apìdeixh tou Jewr mato 4.7.1 ja qrhsimopoi soume thn akìloujh jemeli¸dh arq aparjmhsh . Prìtash 4.7.2
isqÔei
(Arq EgkleismoÔ-ApokleismoÔ) Gia peperasmèna sÔnola A1 , A2 , . . . , Ak
#
k [
i=1
Ai =
k X t=1
(−1)t−1
X
#(Ai1 ∩ · · · ∩ Ait ).
1≤i1 k + (#Si − k) (4.14) i∈I
i∈I
gia kje sÔnolo deikt¸n I ⊆ [m] me toulqiston dÔo stoiqea. Gia S, T ∈ P (n, k) jètoume S T an kje stoiqeo tou S perièqetai se kpoio stoiqeo tou T . (a) Dexte ìti gia k = 1 to zeÔgo (P (n, k), ) enai isìmorfo me to sÔndesmo Πn twn diamersewn tou [n]. (b) Dexte ìti to zeÔgo (P (n, k), ) enai gewmetrikì sÔndesmo txh n − k gia kje 1 ≤ k < n. 10. 'Estw (P, ≤) peperasmèno merik¸ diatetagmèno sÔnolo. Gia A ⊆ P èstw A to sÔnolo twn stoiqewn p tou P gia ta opoa uprqoun a1 , a2 ∈ A me a1 ≤ p ≤ a2 . Dexte ìti h apeikìnish 2P → 2P pou stèlnei to A ⊆ P sto A orzei mia kurt gewmetra sto P . 11. Gia k ≥ 2 dexte ìti k X i=0
k (r − i) = 0. (−1) i i
85 Upodexei - LÔsei 1.
H merik
2.
(a)
[u, v]
An
Q
ditaxh
enai
kai
twn
,
kai
sto
sto
.
'Estw
An
.
1.1 apotele pardeigma
disthma
sunep¸
x, y ∈ L ⊕ M x∧y = x L⊕M
(b)
Sq mato
kleistì
[u, v] x y
an koun sto antstoiqa,
tou
An
sto
L
sÔndesmo
apoteloÔn to
kai
elqisto
sundèsmou me autè
x, y ∈ [u, v]
,
nw
tìte
frgma kai
L⊕M
(y, y ′ )
L×M
ParathroÔme ìti gia
4.
sto
(a)
H
NCn
.
To
x∈L x, y
y∈M
kai
ta
an koun
,
x≤y
tìte
kai
ta
dÔo
L×M
Gia thn perptwsh tou
, me thn profan ènnoia.
x, y ∈ NCn
L⊕M
sto
sto
L
kai
kai ta
NCn
⇒
prokÔptei
dÔo
(b)
Lìgw
tou
sto
,
tìte
L∗
x, y
amèsw
L mma
apì
kai
kai ,
af netai ston anagn¸sth.
sto
Πn
, to opoo perigryame
x, y
(ii)
4.1.1
ton
to
(x, x′ ) (x ∧ y, x′ ∧ y ′ )
kai sunep¸ apotele to mègisto ktw frgma twn
apì to
,
sÔndesmo èqoun thn
(x ∨ y, x′ ∨ y ′ )
H perptwsh tou
.
orismì
th
tstrofo prokÔptei me epagwg sto pl jo twn stoiqewn tou af nontai ston
x∨y =y M
sunep¸
parathroÔme ìti ta stoiqea
to mègisto ktw frgma twn
zhtoÔmeno èpetai
sunepagwg
frgma,
.
sto Pardeigma 4.1.2, an kei sto kai
x∧y
kai
ktw
[u, v]
èqoun kat¸tato nw frgma kai an¸tato ktw frgma
antstoiqa, sto
3.
.
idiìthte .
x∨y
ta
mègisto
kat¸tato nw frgma kai to an¸tato ktw frgma tou ston antstoiqo dia idiìthta sto
ti
asjenoÔ
ditaxh
Inv(τ )−Inv(σ)
.
en¸
to
an-
Oi leptomèreie
anagn¸sth.
(a),
th
Ôparxh
mègistou
stoiqeou
gia
thn
asjen
ditaxh
('Askhsh
6
b
tou
x, y ∈ Sn Inv(w) ⊆ Inv(x) ∩ Inv(y) Inv(w) ⊆ A En = {(i, j) : 1 ≤ i < j ≤ n} (i, j), (j, k) ∈ A ⇒ (i, k) ∈ A A ⊆ En z ∈ Sn w ∈ Sn Inv(w) ⊆ A Inv(w) ⊆ Inv(z) ⊆ A Inv(x) ∩ Inv(y) x, y ∈ Sn A ⊆ En z = un u1 , u2 , . . . , un ui ∈ Si 1≤i≤n u1 = (1) 1 < m ≤ n um (a1 , a2 , . . . , am ) ∈ Sm (i) um−1 um m (ii) m = ai i≥2 (ai−1 , m) ∈ / A (iii) m = ai i < m (aj , m) ∈ A j i < j ≤ m n = 6 A = {(1, 2), (1, 6), (3, 4), (3, 5), (3, 6), (4, 5)} u1 = (1) u2 = (2, 1) u3 = (2, 1, 3) u4 = (2, 1, 4, 3) u5 = (2, 1, 5, 4, 3) u6 = (2, 1, 5, 4, 6, 3) Kefalaou
1)
kai
tou
L mmato
z ∈ Sn Inv(z) ⊆ Inv(x) ∩ Inv(y) uprqei
tètoio,
.
th
metabatik
idiìthta
me
thn
th
metabatik
idiìthta
th
metabatik
idiìthta,
idiìthta
aut
pou
h
monadik
,
ìro
tètoio,
Profan¸
kje
sunep¸
sÔnolo
arke
na
ìpou
jètoume
epagwgik
w
,
ex .
an
kje
dexoume
me
Inv(w) ⊆ A
,
na Gia
na
ta
,
dekth
kai
idiìthte
isqÔei
me
isqurismì.
'Eqoume
kje
na
morf ton
gia
me
enai
ti
ìti
èqei
Dosmènou
metajèsei
h
prokÔptei
tìte
kai
.
tìte
,
gia
gia
h
me
me
me
Gia
apì
enai
th
an
pardeigma,
an
,
,
.
m Inv(um ) ⊆ A 1 ≤ m ≤ n w ∈ Sm Inv(w) ⊆ Inv(um ) m = n m ≥ 2 um Inv(um ) ⊆ A w ∈ Sm (r, s) ∈ Inv(w) − Inv(um )
epagwg
ìti
ìla
èqei
kje
kai
tìte
upojèsoume
gia
Isqurizìmaste
ta
,
,
gia
th
kai
gia
ex :
tou
dexoume
me
tìte
to
na isqÔei
¸ste
kai
Ja
dexoume
.
kai
orzontai
ton
na
me
Ja lème ìti èna uposÔnolo
metjesh
diagrfonta kai
arke
an
uprqei .
(ii) w ∈ Sn
4.1.1
¸ste gia kje
katal xoume
sto
ìti
gia
.
.
se
Apì
topo,
thn
èstw
H
perptwsh
kataskeu
ìti
kai
uprqei
tou
dnei
èqoume
kai
to
ìti
an
zhtoÔmeno.
amèsw
kai
MporoÔme
ìti
.
.
Apì
86 s = m um = (a1 , a2 , . . . , am ) m = ai (r, m) ∈ / Inv(um ) i≥2 r = ak k ai−1 (ai−1 , r) ∈ Inv(um ) ⊆ A (r, m) ∈ A A (ai−1 , m) ∈ A r < ai−1 (r, ai−1 ) ∈ / Inv(um−1 ) (r, ai−1 ) ∈ / Inv(w) (r, m) ∈ Inv(w) (ai−1 , m) ∈ Inv(w) (ai−1 , m) ∈ A thn
epagwg
m
sto
ja
prèpei
.
èqoume
tou
kai
kai
,
,
prgma
exaita
Upojètoume ìti to
y
[ˆ0, x]
enai
to
kai
angwgo.
Gia
ra
kai
sto
,
èqoume
Dexame dhlad ìti
den
enai
ìti
dunatì
(dedomènou tou
6.
,
to
enai
na
ìti
angwgo
kalÔptei to
L
diast mato
dÔo
dhlad
Bn
th
a
kai
arke
na
orsei
kane
metajèsewn tou
Enai
eÔkolo
4.5.1,
ìpou tou
na
S S
,
enai
,
tuqao
enai tou
h
to
to
opìte
zk−1 z ∈ [ˆ0, x] to
.
Epsh gia tuqaa
sunep¸ enai
diìti
megistik
kalÔptei
,
[ˆ0, y) =
sthn
u ∨ v 6= y
.
angwgo
tìte
perptwsh
aut
.
gia
.
Gia
thn
asjen
ditaxh
sto
x⊥ =
Oi zhtoÔmene idiìthte prokÔptoun apì thn 'Askhsh
tou
ei − ej to
enai isìmorfo me
dianusmtwn
anexrthta).
gia
4.5.1,
Rn S
q¸rou
ìpou
to
1≤i