34 0 113KB
Principalele valori ale funct¸iilor sin x ¸si cos x
Funct¸iile trigonometrice ale multiplilor unui unghi
y
√ ! 1 3 − , 2 2 ! √ √ 2 2 − , 2 2 2π ! √ 3 3 1 3π , − 2 2 4 120◦ 5π ◦ 135 6 150◦ (−1, 0)
(0, 1)
√ ! 1 3 , 2 2
π 2 90◦
π 3 60◦
ctg2α =
√ √ ! 2 2 , 2 2 √
3 1 , 2 2
π 4
!
cos 3α = cos α(4 cos2 α − 3) tg3α =
3tgα−tg 3 α 1−3tg 2 α
ctg3α =
ctg 3 α−3ctgα 3ctg 2 α−1
Pentru funct¸iile tg α2 ¸si ctg a2 se folosesc uneori ¸si formulele
◦
30
(1, 0)
360 0◦ ◦
ctg 2 α−1 2ctgα
sin 3α = sin α(3 − 4 sin2 α)
Funct¸iile trigonometrice ale jum˘ at˘ a¸tii unui unghi q q 1−cos α α α tg = ± sin α2 = ± 1−cos 2 q 2 q1+cos α 1+cos α α ctg α2 = ± 1−cos cos α2 = ± 1+cos α 2
π 6
45◦
180◦
π
sin 2α = 2 sin α cos α cos 2α = cos2 α − sin2 α = 2 cos2 α − 1 = 1 − 2sin2 α 2 tg α tg2α = 1−tg 2α
2π
x
tg α2 = tg α2 =
sin α 1+cos α 1−cos α sin α
ctg α2 = ctg α2 =
1+cos α sin α sin α 1−cos α
De asemenea sunt utile ¸si formulele 210◦
−
√
3 1 ,− 2 2
!
7π 6 5π 4
√ ! 2 2 − ,− 2 2 √
225◦ 240◦ 4π 3
330◦ 11π 6
315◦ 300 270◦
◦
5π 3
3π 2
√ ! 1 3 − ,− 2 2
7π 4
√
3 1 ,− 2 2
√ ! 2 2 ,− 2 2 √ ! 1 3 ,− 2 2 √
(0, −1)
Formule fundamentale sin2 α + cos2 α = 1;
tg α =
sin α cos α
Funct¸iile trigonometrice ale sumei ¸si diferent¸ei de unghiuri sin(α + β) = sin α · cos β + cos α · sin β sin(α − β) = sin α · cos β − cos α · sin β cos(α + β) = cos α · cos β − sin α · sin β cos(α − β) = cos α · cos β + sin α · sin β
tgα+tgβ 1−tgα·tgβ tg α−tg β tg(α − β) = 1−tg α·tg β α·ctg β−1 ctg(α + β) = ctg ctg α+ctg β α·ctg β+1 ctg(α − β) = ctg ctg β−ctg α
tg(α + β) =
!
sin α = 2 sin α2 cos α2 ; cos α = cos2 α2 − sin2 α2 ;
1 − cosα = 2 sin2 α2 ; 1 + cos α = 2 cos2 α2
Exprimarea funct¸iilor trigonometrice ale unghiului α cu ajutorul tg α2 (formulele universale) sin α = cos α =
2tg α 2 1+tg 2 α 2 1−tg 2 α 2 2 1+tg α 2
2tg α 2 1−tg 2 α 2 1−tg 2 α = 2tg α 2 2
tg α = ctg a
Formule pentru transformarea unor sume ¸si diferent¸e de funct¸ii trigonometrice ˆın produs. α−β sin α + sin β = 2 sin α+β 2 · cos 2 α+β sin α − sin β = 2 sin α−β 2 · cos 2 α+β cos α + cos β = 2 cos 2 · cos α−β 2 β−α cos α − cos β = 2 sin α+β · sin 2 2
tg α ± tg β =
sin(α±β) cos α·cos β
sin(α+β) sin α·sin β sin(β−α) ctg α − ctg β = sin α·sin β cos(α+β) tg α − ctg β = − cos α cos β 1 − cos α = 2sin2 α2 1 + cos β = 2cos2 α2
ctg α + ctg β =
Formule pentru transformarea unor produse de funct¸ii trigonometrice ˆın sume: tg β+tg β sin α · cos β = 12 [sin(α + β) + sin(α − β)] tg α · tg β = ctg α+ctg β cosα · cosβ = 12 [cos(α + β) + cos(α − β)]
sinα · sinβ = 12 [cos(α − β) − cos(α + β)]
ctg α+ctg β tg α+tg β α+tg β = ctg tg α+ctg β
ctg α · ctg β = ctg α · tg β