41 1 192KB
Revisi : A Page 1 of 14
TANKI DESIGN API STANDARD 650 10th EDITION : : : : : :
PROJECT CLIENT TANK SIZE TAG NUMBER DOCUMENT NUMBER
LPG PLANT TAMBUN PT. ODIRA ENERGY PERSADA CONDENSATE TANK 9100 ID X 7400 H T - 100 TMB - ME - C - 001
By :
PLATE THICKNESS CALCULATION Thickness of Shell Plates - API STD 650 - Eighth Edition, November 1988 ( appendix F - Design of Tanks for Small Internal Pressure ) - API STD 650 - 10th Edition
THICKNESS OF SHELL PLATES DESIGN DATA FOR CALCULATION THE MINIMUM THICKNESS OF SHELL MATERIAL : SS - 400 Minimum thickness of shell Nominal diameter of tank Radius of shell Design liquid level Area of shell
t D R HL
29.86 14.93 24.28
inch ft ft ft
As = x D x HL
As
211.60
sq m
Vs = x R2 x HL
Vs SA G E CA SG
17,002.71 62.4 0.7 0.85 0.125 18 7,850.00
Volume of shell Specific Gravity of water Specific Gravity of the liquid to be stored Joint efficiency Corrosion allowance Angle of cone elements to horizontal Specific Gravity of steel
cu ft lbs per cu ft
inch degrees kg/cu m
The minimum thicknesses of shell plates shall be computed from the stress on the vertical joints, using the following formula :
(2.6)( D )( H L−1)(G) +CA ( E)(21,000) t = 0.196 inch = 5.715
t=
mm
The required thickness shall be grater of the design shell thickness including any corrosion allowance. ts = Selected shell thickness 0.25 inch = 6.35 mm Ws = Ar x ts x SG Total weight of shell plates Ws = 10,547.73 kg = 23,253.89 lbs Weight of water
Was = Was =
Vs x SA 1,060,969.10
lbs
NS
Date : 22/02/2006
Revisi : A Page 2 of 14
THICKNESS OF ROOF PLATES ts = 0.25
Selected roof thickness
6.35
inch =
Ar = x R x (R/cos ) Ar = 736.31389 sq ft =
Area of roof
Weight of roof plates External Total
Wr = Ex = q1 =
3,409.75 250.00 3,659.75
Height of roof
hr =
R tan
Volume of roof
Vr = 1/3 x x hr = 5.07999
kg kg kg
4.85103
WAr = Vr x SA =
Weight of water
= = =
316.991
mm
68.40 7,501.44 550.00 8,051.44
sq m lbs lbs lbs
ft cu ft lbs
Used sixteen channel beam for frame
Capacity Weight of one channel beam : q2 50 cm
q2 = q1/16 =
228.73
kg
P1 = 1.2 x q2 =
274.48
kg
906.8 cm
4.534
P1
m 22.5°
4.284 m 4.534
Uniform live load
qul =
Uniform live load
100 kg/m2 qL = qul x Ar/16 =
427.52
m
kg
qL 22.5°
4.534 m
4.534
m
Revisi : A Page 3 of 14 Material SS 41 = BJ 37 Stress of material
1600 kg/cm2 q = ( P1 + qL) / 4.534 = q =
154.83
kg/m
M max = 1/8 ql2 M max = 397.86
kg m
L = 4.534 m
Determined dimension channel beam Mmax / W x Wx =
24.866
cm3
Light lip Channel C 125x50x20x4 Wx = 34.700 cm3 Ix = 217 cm4 w=
kg/m
7.5
CHECK OF DEFLECTION 1/360 L 1.19 cm E =
2,100,000.00
kg/cm2
4
5qL 384EI x 5 x 2 .0124 x 453 . 4 4 1.87 = 6 384 x 2 . 1 x 10 x 217
cm > = 1.19 cm
Change light lip channel C 125 x 50 x 20 x 4.5 Wx = 38.00 cm3 Ix = 238 cm4 w=
Angle
8.32 kg/m
5 x 2. 0124 x 453 . 4 4 1.10 = 6 x 2x 6. 1 x 10 x238 L 150384 x 150
cm < = 1.19 cm OK !
154.83 kg/m
Revisi : A Page 4 of 14 Wx =
cm3
78.20
ROOF STRUCTURE CALCULATION qD = Wr/Ar
Design Load ( Weight of roof plates ) Uniform live load Wind velocity load
qD qL qw Total load
q q
49.85 100.00 72.55 222.40 0.022
kg/m2 kg/m2 kg/m2 kg/m2 kg/cm2
Maximum Distance of Rafter The maximum distance of rafter may determined as follows :
L
L= Where L W S q
√
12WxS q
= Maximum distance of rafter = Resistance moment = Allowable stress = Uniform load
1,600.00 0.022
For width B = 1 m perpendicular to drawing plan
kg/cm2 kg/cm2
q = B x 0.022 kg/cm 2 q = 1 x 0.022 kg/cm2 q= 0.02224 kg/cm2
Resistant moment : W = 1/6 x B x t2 W = 1/6 x 100 x 0.635 W= 672.04 cm3
L=
√
12x672. 04x1600 0. 0222
L = 24,087.06
cm =
240.871
CHECK : Used light lip channel to be used for rafter C 125 x 50 x 20 x 4.5 Material Spec. SS 400 Ix Momen Inertia 238 cm4 Iy 33.5 cm4
m ( Greather than 1/2 D = 4.534 m )
Revisi : A Page 5 of 14 Wx
Modulus Sect.
38 10.1 10.59 8.32
Wy Sectional Area Unit Weight
A w
cm3 cm3 cm2 kg/m
STRENGTH CALCULATION q1 X
Q1
A1
q2 Q2
w
RA
4.534 m
L =R= =
q1 = q . X + w q2 = q . 0 + w
A2 RB
=
222.455 x 1.47+8.32 =
=
222.45 x 0 + 8.32 =
Q1 =
A1 =
Q2 =
1/2 L(q1 - w)
335.244
kg/m
8.32
kg/m
=
741.137
kg
A2 =
Lxw RA = (L(2/3 Q1 +1/2 Q2))/L
= =
37.7229
kg
512.953
kg
RB = (L(1/3 Q1 +1/2 Q2))/L
=
265.907
kg
M1 = 0.128 x Q1 x L
=
430.121
kg m
M2 = 0.125 x Q2 x L
=
21.3794
kg m
451.5
kg m
Mmax =
=
Modulus of section required
Mmax / Wx Wx
=
28.22
Wx
=
28.22
cm3
OK !
The required modulus section is less than the modulus section of assumed channel to be used
Revisi : A Page 6 of 14
DEFLECTION Due to live load q1L = qL. X + w q2L
=
Q1L
= q.0+w = = A1 =
Q2L
=
100 x 1.47 + 8.32 = 100 x 0 + 8.32 1/2 L(q1d - w)
A2 =
1,223.04 kg/m
= =
8.32 kg/m 2,753.77
kg
Lxw = (L(2/3 Q1L +1/2 Q2L))/L
= =
37.72
kg
RAL
1,854.71
kg
RBL
= (L(1/3 Q1L +1/2 Q2L))/L
=
936.78
kg
f 1 L=
R A x1/2L−Q 1 x1/6L L
EI x
f2 = L
Due to dead load q1D = qD. X + w
L
R AL x1/2L EI X
0.0004249
cm
0.0008413
cm
0.0012662
cm
=
=
fL total =
=
49.9 x 1.47 + 8.32
=
81.60 kg/m
=
49.9 x 0 + 8.32 1/2 L(q1D - w)
= =
8.32 kg/m
q2D
= qD . 0 + w
Q1D
=
A1 =
Q2D
=
A2 =
166.12
kg
Lxw = (L(2/3 Q1D +1/2 Q2D))/L
= =
32.655
kg
RAD
127.07
kg
RBD
= (L(1/3 Q1D +1/2 Q2D))/L
=
71.70
kg
R A x1/2L−Q 1 x1/6L0.0000325 D D f1 = = D EI x
f2 = D
R AD x1/2L EI X fD total =
cm
0.0000576
cm
0.0000902
cm
=
Revisi : A Page 7 of 14
Due to wind load q1W = qw. X + w = q2W = qw . 0 + w
=
Q1W =
A1 =
Q2W =
A2 =
RAW = (L(2/3 Q1W RBW
72.55 x 1.47 + 8.32
=
114.97 kg/m
72.55 x 0 + 8.32 1/2 L(q1W - w)
= =
8.32 kg/m
Lxw +1/2 Q2W ))/L
W
kg
37.72
kg
=
180.04
kg
=
99.45
kg
0.0000451
cm
0.0000817
cm
0.0001268
cm
=
= (L(1/3 Q1W +1/2 Q2W ))/L
f1 =
241.77
R A x1/2L−Q 1 x1/6L W
W
EI x
f2 = W
R AW x1/2L EI X
=
=
fD total =
Total Deflection f = ( fl total + fd total + fw total ) = ### cm