Calculation of T-100 [PDF]

  • 0 0 0
  • Gefällt Ihnen dieses papier und der download? Sie können Ihre eigene PDF-Datei in wenigen Minuten kostenlos online veröffentlichen! Anmelden
Datei wird geladen, bitte warten...
Zitiervorschau

Revisi : A Page 1 of 14

TANKI DESIGN API STANDARD 650 10th EDITION : : : : : :

PROJECT CLIENT TANK SIZE TAG NUMBER DOCUMENT NUMBER

LPG PLANT TAMBUN PT. ODIRA ENERGY PERSADA CONDENSATE TANK 9100 ID X 7400 H T - 100 TMB - ME - C - 001

By :

PLATE THICKNESS CALCULATION Thickness of Shell Plates - API STD 650 - Eighth Edition, November 1988 ( appendix F - Design of Tanks for Small Internal Pressure ) - API STD 650 - 10th Edition

THICKNESS OF SHELL PLATES DESIGN DATA FOR CALCULATION THE MINIMUM THICKNESS OF SHELL MATERIAL : SS - 400 Minimum thickness of shell Nominal diameter of tank Radius of shell Design liquid level Area of shell

t D R HL

29.86 14.93 24.28

inch ft ft ft

As =  x D x HL

As

211.60

sq m

Vs =  x R2 x HL

Vs SA G E CA  SG

17,002.71 62.4 0.7 0.85 0.125 18 7,850.00

Volume of shell Specific Gravity of water Specific Gravity of the liquid to be stored Joint efficiency Corrosion allowance Angle of cone elements to horizontal Specific Gravity of steel

cu ft lbs per cu ft

inch degrees kg/cu m

The minimum thicknesses of shell plates shall be computed from the stress on the vertical joints, using the following formula :

(2.6)( D )( H L−1)(G) +CA ( E)(21,000) t = 0.196 inch = 5.715

t=

mm

The required thickness shall be grater of the design shell thickness including any corrosion allowance. ts = Selected shell thickness 0.25 inch = 6.35 mm Ws = Ar x ts x SG Total weight of shell plates Ws = 10,547.73 kg = 23,253.89 lbs Weight of water

Was = Was =

Vs x SA 1,060,969.10

lbs

NS

Date : 22/02/2006

Revisi : A Page 2 of 14

THICKNESS OF ROOF PLATES ts = 0.25

Selected roof thickness

6.35

inch =

Ar =  x R x (R/cos ) Ar = 736.31389 sq ft =

Area of roof

Weight of roof plates External Total

Wr = Ex = q1 =

3,409.75 250.00 3,659.75

Height of roof

hr =

R tan 

Volume of roof

Vr = 1/3 x  x hr = 5.07999

kg kg kg

4.85103

WAr = Vr x SA =

Weight of water

= = =

316.991

mm

68.40 7,501.44 550.00 8,051.44

sq m lbs lbs lbs

ft cu ft lbs

Used sixteen channel beam for frame

Capacity Weight of one channel beam : q2 50 cm

q2 = q1/16 =

228.73

kg

P1 = 1.2 x q2 =

274.48

kg

906.8 cm

4.534

P1

m 22.5°

4.284 m 4.534

Uniform live load

qul =

Uniform live load

100 kg/m2 qL = qul x Ar/16 =

427.52

m

kg

qL 22.5°

4.534 m

4.534

m

Revisi : A Page 3 of 14 Material SS 41 = BJ 37 Stress of material



1600 kg/cm2 q = ( P1 + qL) / 4.534 = q =

154.83

kg/m

M max = 1/8 ql2 M max = 397.86

kg m

L = 4.534 m

Determined dimension channel beam Mmax / W x Wx =

24.866

cm3

Light lip Channel C 125x50x20x4 Wx = 34.700 cm3 Ix = 217 cm4 w=

kg/m

7.5

CHECK OF DEFLECTION 1/360 L 1.19 cm E =





2,100,000.00

kg/cm2

4

5qL 384EI x 5 x 2 .0124 x 453 . 4 4 1.87 = 6 384 x 2 . 1 x 10 x 217

cm >  = 1.19 cm

Change light lip channel C 125 x 50 x 20 x 4.5 Wx = 38.00 cm3 Ix = 238 cm4 w= 

Angle

8.32 kg/m

5 x 2. 0124 x 453 . 4 4 1.10 = 6 x 2x 6. 1 x 10 x238 L 150384 x 150

cm <  = 1.19 cm OK !

154.83 kg/m

Revisi : A Page 4 of 14 Wx =

cm3

78.20

ROOF STRUCTURE CALCULATION qD = Wr/Ar

Design Load ( Weight of roof plates ) Uniform live load Wind velocity load

qD qL qw Total load

q q

49.85 100.00 72.55 222.40 0.022

kg/m2 kg/m2 kg/m2 kg/m2 kg/cm2

Maximum Distance of Rafter The maximum distance of rafter may determined as follows :

L

L= Where L W S q



12WxS q

= Maximum distance of rafter = Resistance moment = Allowable stress = Uniform load

1,600.00 0.022

For width B = 1 m perpendicular to drawing plan

kg/cm2 kg/cm2

q = B x 0.022 kg/cm 2 q = 1 x 0.022 kg/cm2 q= 0.02224 kg/cm2

Resistant moment : W = 1/6 x B x t2 W = 1/6 x 100 x 0.635 W= 672.04 cm3

L=



12x672. 04x1600 0. 0222

L = 24,087.06

cm =

240.871

CHECK : Used light lip channel to be used for rafter C 125 x 50 x 20 x 4.5 Material Spec. SS 400 Ix Momen Inertia 238 cm4 Iy 33.5 cm4

m ( Greather than 1/2 D = 4.534 m )

Revisi : A Page 5 of 14 Wx

Modulus Sect.

38 10.1 10.59 8.32

Wy Sectional Area Unit Weight

A w

cm3 cm3 cm2 kg/m

STRENGTH CALCULATION q1 X

Q1

A1

q2 Q2

w

RA

4.534 m

L =R= =

q1 = q . X + w q2 = q . 0 + w

A2 RB

=

222.455 x 1.47+8.32 =

=

222.45 x 0 + 8.32 =

Q1 =

A1 =

Q2 =

1/2 L(q1 - w)

335.244

kg/m

8.32

kg/m

=

741.137

kg

A2 =

Lxw RA = (L(2/3 Q1 +1/2 Q2))/L

= =

37.7229

kg

512.953

kg

RB = (L(1/3 Q1 +1/2 Q2))/L

=

265.907

kg

M1 = 0.128 x Q1 x L

=

430.121

kg m

M2 = 0.125 x Q2 x L

=

21.3794

kg m

451.5

kg m

Mmax =

=

Modulus of section required

Mmax / Wx Wx

=

28.22

Wx

=

28.22

cm3

OK !

The required modulus section is less than the modulus section of assumed channel to be used

Revisi : A Page 6 of 14

DEFLECTION Due to live load q1L = qL. X + w q2L

=

Q1L

= q.0+w = = A1 =

Q2L

=

100 x 1.47 + 8.32 = 100 x 0 + 8.32 1/2 L(q1d - w)

A2 =

1,223.04 kg/m

= =

8.32 kg/m 2,753.77

kg

Lxw = (L(2/3 Q1L +1/2 Q2L))/L

= =

37.72

kg

RAL

1,854.71

kg

RBL

= (L(1/3 Q1L +1/2 Q2L))/L

=

936.78

kg

f 1 L=

R A x1/2L−Q 1 x1/6L L

EI x

f2 = L

Due to dead load q1D = qD. X + w

L

R AL x1/2L EI X

0.0004249

cm

0.0008413

cm

0.0012662

cm

=

=

fL total =

=

49.9 x 1.47 + 8.32

=

81.60 kg/m

=

49.9 x 0 + 8.32 1/2 L(q1D - w)

= =

8.32 kg/m

q2D

= qD . 0 + w

Q1D

=

A1 =

Q2D

=

A2 =

166.12

kg

Lxw = (L(2/3 Q1D +1/2 Q2D))/L

= =

32.655

kg

RAD

127.07

kg

RBD

= (L(1/3 Q1D +1/2 Q2D))/L

=

71.70

kg

R A x1/2L−Q 1 x1/6L0.0000325 D D f1 = = D EI x

f2 = D

R AD x1/2L EI X fD total =

cm

0.0000576

cm

0.0000902

cm

=

Revisi : A Page 7 of 14

Due to wind load q1W = qw. X + w = q2W = qw . 0 + w

=

Q1W =

A1 =

Q2W =

A2 =

RAW = (L(2/3 Q1W RBW

72.55 x 1.47 + 8.32

=

114.97 kg/m

72.55 x 0 + 8.32 1/2 L(q1W - w)

= =

8.32 kg/m

Lxw +1/2 Q2W ))/L

W

kg

37.72

kg

=

180.04

kg

=

99.45

kg

0.0000451

cm

0.0000817

cm

0.0001268

cm

=

= (L(1/3 Q1W +1/2 Q2W ))/L

f1 =

241.77

R A x1/2L−Q 1 x1/6L W

W

EI x

f2 = W

R AW x1/2L EI X

=

=

fD total =

Total Deflection f = ( fl total + fd total + fw total ) = ### cm