30 0 73KB
Unit Commitment Using Priority List Scheme Objectives: •
Methods to solve the U.C problem
•
To understand Priority List Scheme
•
To solve Unit Commitment Problem (UCP) using Priority List Scheme
Theory: The different methods to solve the U.C problem are:1. LR method 2. Priority list method 3. Dynamic programming method The P.L method is also called the merit order method. In this method, the number of combinations are reduced. Important features of this method are that first Full Load Average Cost is calculated generators are then loaded on the bases of FLA cost is loaded & generator with minimum cost is loaded first and so on.
SYSTEM H 1 ( P1 ) = 510 + 72 P1 + 0.00142 P1
2
H 2 ( P2 ) = 310 + 7.85P2 + 0.00194 P2 H 3 ( P3 ) = 78 + 7.97 P3 + 0.00482 P3 LIMITS 150 ≤ P1 ≤ 600 100 ≤ P2 ≤ 400 50 ≤ P3 ≤ 200 COSTS C1 = 1.1 $ / h C2 = 1.0 $ / h C3 = 1.2 $ / h Power Demand = 550 MW
2
2
Code: function [p,cost]=Pri_list(h,C,plower,pupper,pd) %h=[510 72 0.00142;310 7.85 0.00194;78 7.97 0.00482]; %C=[1.1 1.0 1.2]; %plower=[150 100 50]; %pupper=[600 400 200]; %pd=550; n=length(plower); disp('F(p)=') for i=1:n cost(i,:)=h(i,:)*C(1,i); disp(cost(i,:)); end for i=1:n a(i,1)=cost(i,1); b(i,1)=cost(i,2); y(i,1)=cost(i,3); end disp('full load average cost=') for i=1:n fla(i,1)=(a(i,1)+b(i,1)*pupper(1,i)+y(i,1)*pupper(1,i)^2)/pupper(1,i); disp(fla(i,1)) end p=fla; p(:,2)=plower'; p(:,3)=pupper'; p=sortrows(p); p(1,4)=p(1,2); p(1,5)=p(1,3); for i=1:n-1 p(i+1,4)=p(i+1,2)+p(i,4); p(i+1,5)=p(i+1,3)+p(i,5); end for i=1:n if pd>=p(i,5) p(i,6)=p(i,3); end if pd