69 0 718KB
13.16 For the cracking reaction,
C3H8(g)→ C2H4(g) + CH4(g) The equilibrium conversion is negligible at 300 K, but becomes appreciable at temperaturesabove 500 K. For a pressure of 1 bar, determine : a. The fractional conversion of propane at 625 K. b. The temperature at which the fractional conversion is 85%. Solution : C3H8(g)→ C2H4(g) + CH4(g) v = 1 nC3 H 8 1
Basis: 1 mole C3H8feed. By Eq. (13.4) Fractional conversion of C3H8=
By Eq. (13.5) yC3H8
1 1
n0 nC3 H8
n0
yC2 H 4
1
1 (1 ) 1 yCH 4
1
From data in Table C.4.
H 298 82670 −1 V := ( 1 ) 1
J mol
G298 42290
J mol
1.213 −8.824 28.785 𝐴 ∶= (1.424) B := (14.394) .10-3 C := (−4.392) .10-6 1.702 −2.164 9.081
end := rows(A)
i := 1.. end
A vi. Ai
B vi.Bi
C vi.Ci
i
i
i
A 1.913
B 5.31x10 3
a. T := 625 kelvin T
T0
C po R
dT AT0 1
C 2.268 x10 6
T0 := 298.15 kelvin B 2 2 C 3 3 D 1 T0 1 T0 1 2 3 T0
(Van Ness, Eq. 4.19)
C po dT D 1 2 A ln BT CT 1 0 0 2 2 T R T T 0 2 0 T
(Van Ness, Eq. 5.15)
Where, 625
298,15
T T0
3 625 2 2.268 106 625 3 625 5.31 10 dT 1,913 298.15 1 298.152 1 298.153 1 298.15 298.15 R 2 3 298.15 o 625 C p dT 11.2997 298,15 R
C po
625 1 C p0 dT 625 5.31 10 3 298.15 2.268 10 6 298.152 298.15 625 1 1 . 913 ln 298.15 T 298.15 2 298,15 R 625 C p0 dT R T 0.0022506 298,15 625
T T C p dT G 0 G00 H 00 H 00 1 C p dT RT RT0 RT T T0 R R T T0 0
0
(Van Ness, Eq. 13.18) G 0 42290 82670 82670 1 (11.2997) 0.0022506 RT (8.314)(625) (8.314)(625) 625
G 0 2187.9 RT (Van Ness, Eq.13.11a) G 0 1.52356 K exp RT (Van Ness, Eq.13.28) := 0.5 (guess)
Given
= 0.777
2 (1 ).(1 )
b. = 0.777
G 0 ln K RT
K
K
:= Find ( )
2 (1 ).(1 )
G 0 4972.3
K 2.604
J mol
The problem is now to find the T which generates this value. Its not dificult to find T by trial. This lead to the value T = 646.8 K
13.21 For the methanol synthesis reaction,
CO(g) + 2H2(g) → CH3OH(g) The equilibrium conversion to methanol is large at 300 K, but decreases rapidly with increasing T . However,reaction rates become appreciable only at higher temperatures. For a feed mixture of carbon monoxide and hydrogen in the stoichiometric proportions. a. What is the equilibrium mole fraction of methanol at 1 bar and 300 K b. At what temperature does the equilibrium mole fraction of methanol equal 0.50 for a pressure of 1 bar? c. At what temperature does the equilibrium mole fraction of methanol equal 0.50 for a pressure of 100 bar. Assuming the equilibrium mixture is an ideal gas ? d. At what temperature does the equilibrium mole fraction of methanol equal 0.50 for a pressure of 100 bar, assuming the equilibrium mixture is an ideal solution of gases?
Solution : CO(g) + 2H2(g) = CH3OH(g) The sthochiometric numbers are
CH 3OH 1 2 H 2 2 CO 1 gas 1 (2) 1 2 Basis : 1 mol CO , 2 mol H2 feed ( From the data of Table C. 4 ,) 𝐉
∆H298 = - 90135 𝑴𝒐𝒍
n0 = 3 𝐉
∆G298 = - 24791 𝑴𝒐𝒍
This is the reaction of Ex. 4.6, Pg. 139, from which : ∆A = -7.663 ∆B = 10.815x10-3 ∆C = -3.45x10-6 (a) T = 300 Kelvin T
T0
C po R
dT AT0 1
(Van Ness, Eq. 4.19)
∆D = -0.135x10-5
T0 = 298.15 B 2 2 C 3 3 D 1 T0 1 T0 1 2 3 T0
C po dT D 1 2 T R T A ln BT0 CT0 2T02 2 1 0 T
(Van Ness, Eq. 5.15) T Where, T0 923,15
298,15
923,15
298,15
300 1 2 3 6 5 300 3 . 45 10 300 0 . 135 10 300 10.815 10 3 298 , 15 dT -7.663 298,15 1 298,152 298,153 1 1 298,15 298,15 R 2 3 298,15 300 298,15 298,15
C po
C po R
dT - 9.043
300 1 5 C dT 298,15 300 300 0,135 10 3 6 2 7.663 ln 10.815 10 298,15 3.45 10 298,15 2 298,15 1 R T 298 , 15 2 300 298,15 298,152 298 , 15
923,15
0 p
C p0 dT R T -0.03024 298,15
923,15
T T C p dT G 0 G00 H 00 H 00 1 C p dT RT RT0 RT T T0 R R T T0 0
0
(Van Ness, Eq. 13.18) G 0 - 24791 (- 90135 ) - 90135 1 (9.403) (0.03024) RT (8,413)( 298,15) (8,413)(300) 300
G 0 -2.439 x 104 RT G 0 ln K 2.439 x 104 RT (Van Ness, Eq.13.11a) G 0 K exp RT
1.762 x 104
By Equation (13.5), with the species numbered in the order in which they appear in the reaction, 1− ℰ 2− 2 .ℰ ℰ y1 = y2 = y3 = 3−2 .ℰ 3−2 .ℰ 3−2 .ℰ By Equation (13.28), ℰ = 0.8 (guess) → P = 1 ; P0 = 1 ℰ.( 3−2 .ℰ )2 P 2 Given = ( ) .K ℰ = Find (ℰ) ; ℰ = 0.9752 4.( 1− ℰ)3 P0 ℰ y3 = → y3 = 0.9291 3−2 .ℰ
(b) y3 = 0.5
By the preceding equation
3.𝑦3
→ ℰ = 0.75 2.𝑦3+ 1 Solution of the equilibrium equation for K gives ℰ.( 3−2 .ℰ )2 K= → K = 27 4.( 1− ℰ)3 ℰ=
Find by trial the value of T for which this is correct. It turns out to be : T = 364.47 Kelvin (c) For P = 100 bar , the preceding equation Becomes ℰ.( 3−2 .ℰ )2
. 100-2 → K = 2.7 x 10-3 4.( 1− ℰ)3 Another solution by trial for T yields, T = 516.48 kelvin K=
(d) Equation (13.27) applies, and requires fugacity coefficients. Since iteration will be necessary, assume a starting T of 528 K, for which :
© For CO(1) :
Tr = Pr =
528 132.9 100 34.99
;
Tr = 3.973
;
Pr = 2.858
By using the formula: Tr = T / Tc Pr = P / Pc B0 = 0.083-(0.422/(Tr1.6)) B1 = 0.139-(0.172/(Tr4.2)) ln = (Pr/Tr) x (B0 + (ω x B1))
The results of calculations are tabulated in the following table Tc(K) Pc(atm) CO
Tri
Pri
B0
B1
ɸi
132,9
34,99
33,19
13,13
0,048 3,965388 7,550729 0,036435 0,138472 1,085494 0,216 15,87828 20,12186 0,077941 0,138998 1,062606
512,6
80,97
0,564 1,028092 3,262937 -0,3207
2H2 CH3OH
ωi*
* Price ωi obtained from Appendix B (Smith & Van Ness ed-4)
-0,01411
0,352364
© For CH3OH(3) :
Tr = Pr =
528 512.6 100 34.99
;
Tr = 1.03
;
Pr = 1.235
By equation (11.64) and data from Tables E.15 & E.16. ɸ3 = 0.6206 x (0.9763)0.564 ɸ3 = 0.612 For H2(2), The reduced temperature is so large that it may be assumed ideal ; ɸ = 1. Therefore ; i = 1....3 𝟏. 𝟎𝟑𝟐 −𝟏 ∏𝒊 ﴾ɸ ﴿vi = 0.593 ɸ = (𝟏. 𝟎𝟎𝟎) ; v = (−𝟐) ; 𝟎. 𝟔𝟏𝟐 𝟏 The expression used for K in part (c) now becomes : ℰ.( 3−2 .ℰ )2 K= . 100-2 . 0.593 4.( 1− ℰ)3 K= 1.6011 x 10-3 Another solution by trial for T yields : T = 528.7 Kelvin