Heat Transfer in Solids Final [PDF]

  • 0 0 0
  • Gefällt Ihnen dieses papier und der download? Sie können Ihre eigene PDF-Datei in wenigen Minuten kostenlos online veröffentlichen! Anmelden
Datei wird geladen, bitte warten...
Zitiervorschau

Heat Transfer in Solids Final

1

Contents 1. Model 1 (mod1)................................................................................................................................ 1.1. Definitions................................................................................................................................ 1.2. Geometry 1............................................................................................................................... 1.3. Materials................................................................................................................................... 1.4. Heat Transfer in Solids (ht)....................................................................................................... 1.5. Mesh 1...................................................................................................................................... 2. Study 1.............................................................................................................................................. 2.1. Stationary................................................................................................................................. 2.2. Solver Configurations................................................................................................................ 3. Results.............................................................................................................................................. 3.1. Data Sets................................................................................................................................... 3.2. Tables....................................................................................................................................... 3.3. Plot Groups...............................................................................................................................

2

Model 1 (mod1) 1.1 Definitions 1.1.1

Coordinate Systems

Boundary System 1 Coordinate system type

Boundary system

Identifier

sys1

Settings

Name

Value

Coordinate names

{t1, t2, n}

Create first tangent direction from

Global Cartesian

1.2 Geometry 1

Geometry 1 Units

3

Length unit

m

Angular unit

deg

Geometry statistics

Property

Value

Space dimension

3

Number of domains

24

Number of boundaries 144 Number of edges

288

Number of vertices

192

1.2.1

Import 1 (imp1)

Selections of resulting entities

Name

Value

Geometry import

3D CAD file

Filename

F:\Proiect \Proiect Final.x_t

4

1.3 Materials 1.3.1

Copper

Copper Selection

Geometric entity level

Domain

Selection

Domains 2–24

Material parameters

Name

Value

Unit

Heat capacity at constant pressure

385[J/(kg*K)]

J/(kg*K)

Density

8700[kg/m^3]

kg/m^3

Thermal conductivity

400[W/(m*K)]

W/(m*K)

Basic Settings

Description

Value

Relative permeability

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

Electrical conductivity

{{5.998e7[S/m], 0, 0}, {0, 5.998e7[S/m], 0}, {0, 0, 5

Description

Value 5.998e7[S/m]}}

Heat capacity at constant pressure

385[J/(kg*K)]

Relative permittivity

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

Surface emissivity

0.5

Density

8700[kg/m^3]

Thermal conductivity

{{400[W/(m*K)], 0, 0}, {0, 400[W/(m*K)], 0}, {0, 0, 400[W/(m*K)]}}

Linearized resistivity Settings

Description

Value

Reference resistivity

1.72e-8[ohm*m]

Resistivity temperature coefficient

3.9e-3[1/K]

Reference temperature

273.15[K]

1.3.2

Si(c)

Si(c)

6

Selection

Geometric entity level

Domain

Selection

Domain 1

Material parameters

Name

Value

Unit

Heat capacity at constant pressure

700[J/(kg*K)]

J/(kg*K)

Density

2329[kg/m^3]

kg/m^3

Thermal conductivity

130[W/(m*K)]

W/(m*K)

Basic Settings

Description

Value

Coefficient of thermal expansion

{{2.6e-6[1/K], 0, 0}, {0, 2.6e-6[1/K], 0}, {0, 0, 2.6e-6[1/K]}}

Heat capacity at constant pressure

700[J/(kg*K)]

Relative permittivity

{{11.7, 0, 0}, {0, 11.7, 0}, {0, 0, 11.7}}

Density

2329[kg/m^3]

Thermal conductivity

{{130[W/(m*K)], 0, 0}, {0, 130[W/(m*K)], 0}, {0, 0, 130[W/(m*K)]}}

Young's modulus and Poisson's ratio Settings

Description

Value

Young's modulus 170e9[Pa] Poisson's ratio

0.28

7

1.4 Heat Transfer in Solids (ht)

Heat Transfer in Solids Selection

Geometric entity level

Domain

Selection

Domains 1–24

Equations

Settings

Description

Value

Temperature

Quadratic

Compute boundary fluxes

0

Value type when using splitting of complex variables

Real

Equation form

Study controlled

Streamline diffusion

1

Crosswind diffusion

0

Lower gradient limit

0.01[K]/ht.helem

8

Description

Value 0

Isotropic diffusion

0 root.J

Show equation assuming

std1/stat

Heat transfer in biological tissue

0

Heat transfer in porous media

0

Surface-to-surface radiation

0

Radiation in participating media

0 0

Moving frame

Moving frame flag (false) 0 1

Used products

COMSOL Multiphysics

9

1.4.1

Heat Transfer in Solids 1

Heat Transfer in Solids 1 Selection

Geometric entity level

Domain

Selection

Domains 1–24

Equations

Settings Settings

Description

Value

Thermal conductivity

From material

Thermal conductivity

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}

Density

From material

Heat capacity at constant pressure

From material

Properties from material

10

Property

Material

Property group

Thermal conductivity

Copper

Basic

Density

Copper

Basic

Heat capacity at constant pressure

Copper

Basic

Thermal conductivity

Si(c)

Basic

Density

Si(c)

Basic

Heat capacity at constant pressure

Si(c)

Basic

Variables Name

Expression

Unit

Description

Selection

ht.kxx

model.input.k11

W/(m*K)

Thermal conductivity, xx component

Domains 2– 24

ht.kyx

model.input.k21

W/(m*K)

Thermal conductivity, yx component

Domains 2– 24

ht.kzx

model.input.k31

W/(m*K)

Thermal conductivity, zx component

Domains 2– 24

ht.kxy

model.input.k12

W/(m*K)

Thermal conductivity, xy component

Domains 2– 24

ht.kyy

model.input.k22

W/(m*K)

Thermal conductivity, yy component

Domains 2– 24

ht.kzy

model.input.k32

W/(m*K)

Thermal conductivity, zy component

Domains 2– 24

ht.kxz

model.input.k13

W/(m*K)

Thermal conductivity, xz component

Domains 2– 24

ht.kyz

model.input.k23

W/(m*K)

Thermal conductivity, yz component

Domains 2– 24

ht.kzz

model.input.k33

W/(m*K)

Thermal conductivity, zz component

Domains 2– 24

ht.kxx

model.input.k11

W/(m*K)

Thermal conductivity, xx component

Domain 1

ht.kyx

model.input.k21

W/(m*K)

Thermal conductivity, yx component

Domain 1

ht.kzx

model.input.k31

W/(m*K)

Thermal conductivity, zx component

Domain 1

ht.kxy

model.input.k12

W/(m*K)

Thermal conductivity, xy component

Domain 1

ht.kyy

model.input.k22

W/(m*K)

Thermal conductivity, yy component

Domain 1

11

Name

Expression

Unit

Description

Selection

ht.kzy

model.input.k32

W/(m*K)

Thermal conductivity, zy component

Domain 1

ht.kxz

model.input.k13

W/(m*K)

Thermal conductivity, xz component

Domain 1

ht.kyz

model.input.k23

W/(m*K)

Thermal conductivity, yz component

Domain 1

ht.kzz

model.input.k33

W/(m*K)

Thermal conductivity, zz component

Domain 1

ht.rho

model.input.rho

kg/m^3

Density

Domains 2– 24

ht.rho

model.input.rho

kg/m^3

Density

Domain 1

ht.Cp

model.input.Cp

J/(kg*K)

Heat capacity at constant pressure

Domains 2– 24

ht.Cp

model.input.Cp

J/(kg*K)

Heat capacity at constant pressure

Domain 1

ht.alphap

-d(ht.rho,T)/ (ht.rho+eps)

1/K

Isobaric compressibility coefficient

Domains 1– 24

ht.pA

1[atm]

Pa

Absolute pressure

Domains 1– 24

ht.gradTmag

sqrt(ht.gradTx^2+ht.gra dTy^2+ht.gradTz^2)

K/m

Temperature gradient magnitude

Domains 1– 24

ht.kmean

(ht.k_effxx+ht.k_effyy+h t.k_effzz)/3

W/(m*K)

Mean effective thermal conductivity

Domains 1– 24

ht.dfluxx

-ht.k_effxx*Txht.k_effxy*Tyht.k_effxz*Tz

W/m^2

Conductive heat flux, x component

Domains 1– 24

ht.dfluxy

-ht.k_effyx*Txht.k_effyy*Tyht.k_effyz*Tz

W/m^2

Conductive heat flux, y component

Domains 1– 24

ht.dfluxz

-ht.k_effzx*Txht.k_effzy*Tyht.k_effzz*Tz

W/m^2

Conductive heat flux, z component

Domains 1– 24

ht.dfluxMag

sqrt(ht.dfluxx^2+ht.dflu xy^2+ht.dfluxz^2)

W/m^2

Conductive heat flux magnitude

Domains 1– 24

ht.Q

0

W/m^3

Heat source

Domains 1– 24

ht.qs

0

W/(m^3*K)

Production/absorption coefficient

Domains 1– 24

12

Name

Expression

Unit

Description

Selection

ht.Qmet

0

W/m^3

Metabolic heat source

Domains 1– 24

ht.Qtot

0

W/m^3

Total heat source

Domains 1– 24

ht.rhoInt

subst(ht.rho,1[atm],ht.p A)

kg/m^3

Density for integration

Domains 1– 24

ht.CpInt

subst(ht.Cp,1[atm],ht.p A)

J/(kg*K)

Specific heat capacity for integration

Domains 1– 24

ht.gammaInt

subst(ht.gamma,1[atm], ht.pA)

1

Ratio of specific heats for integration

Domains 1– 24

ht.HRef

ht.CpRef*ht.TRef

J/kg

Reference enthalpy

Domains 1– 24

ht.DeltaH

integrate(subst(ht.CpInt ,ht.pA,ht.pRef),T,ht.TRe f,T)

J/kg

Sensible enthalpy

Domains 1– 24

ht.H

ht.HRef+ht.DeltaH

J/kg

Enthalpy

Domains 1– 24

ht.H0

ht.H

J/kg

Total enthalpy

Domains 1– 24

ht.Ei

ht.H

J/kg

Internal energy

Domains 1– 24

ht.Ei0

ht.Ei

J/kg

Total internal energy

Domains 1– 24

ht.trlfluxx

0

W/m^2

Translational heat flux, x component

Domains 1– 24

ht.trlfluxy

0

W/m^2

Translational heat flux, y component

Domains 1– 24

ht.trlfluxz

0

W/m^2

Translational heat flux, z component

Domains 1– 24

ht.trlfluxMag

sqrt(ht.trlfluxx^2+ht.trl fluxy^2+ht.trlfluxz^2)

W/m^2

Translational heat flux magnitude

Domains 1– 24

ht.afluxx

0

W/m^2

Convective heat flux, x component

Domains 1– 24

ht.afluxy

0

W/m^2

Convective heat flux, y component

Domains 1– 24

ht.afluxz

0

W/m^2

Convective heat flux, z component

Domains 1– 24

ht.afluxMag

sqrt(ht.afluxx^2+ht.aflu

W/m^2

Convective heat flux

Domains 1–

13

Name

Expression

Unit

xy^2+ht.afluxz^2)

Description

Selection

magnitude

24

ht.tfluxx

ht.dfluxx+ht.trlfluxx+ht. afluxx

W/m^2

Total heat flux, x component

Domains 1– 24

ht.tfluxy

ht.dfluxy+ht.trlfluxy+ht. afluxy

W/m^2

Total heat flux, y component

Domains 1– 24

ht.tfluxz

ht.dfluxz+ht.trlfluxz+ht. afluxz

W/m^2

Total heat flux, z component

Domains 1– 24

ht.tfluxMag

sqrt(ht.tfluxx^2+ht.tflux y^2+ht.tfluxz^2)

W/m^2

Total heat flux magnitude

Domains 1– 24

ht.tefluxx

ht.dfluxx

W/m^2

Total energy flux, x component

Domains 1– 24

ht.tefluxy

ht.dfluxy

W/m^2

Total energy flux, y component

Domains 1– 24

ht.tefluxz

ht.dfluxz

W/m^2

Total energy flux, z component

Domains 1– 24

ht.tefluxMag

sqrt(ht.tefluxx^2+ht.tefl uxy^2+ht.tefluxz^2)

W/m^2

Total energy flux magnitude

Domains 1– 24

ht.rflux

0

W/m^2

Radiative heat flux

Boundaries 1–144

ht.ccflux

0

W/m^2

Convective heat flux

Boundaries 1–144

ht.ntrlflux

mean(ht.trlfluxx)*ht.nx +mean(ht.trlfluxy)*ht.n y+mean(ht.trlfluxz)*ht. nz

W/m^2

Normal translational heat flux

Boundaries 1–144

ht.ntrlflux_u

up(ht.trlfluxx)*ht.nx+up (ht.trlfluxy)*ht.ny+up(ht .trlfluxz)*ht.nz

W/m^2

Internal normal translational heat flux, upside

Boundaries 8, 13, 18, 26, 31, 37, 42, 47, 53, 62, 67, 72, 78, 83, 90, 96, 102, 108, 115, 120, 125, 131, 139

ht.ntrlflux_d

down(ht.trlfluxx)*ht.nx +down(ht.trlfluxy)*ht.n y+down(ht.trlfluxz)*ht. nz

W/m^2

Internal normal translational heat flux, downside

Boundaries 8, 13, 18, 26, 31, 37, 42, 47, 53, 62, 67, 72, 78, 83, 90, 96, 102, 108,

14

Name

Expression

Unit

Description

Selection 115, 120, 125, 131, 139

ht.naflux

mean(ht.afluxx)*ht.nx+ mean(ht.afluxy)*ht.ny+ mean(ht.afluxz)*ht.nz

W/m^2

Normal convective heat flux

Boundaries 1–144

ht.naflux_u

up(ht.afluxx)*ht.nx+up( ht.afluxy)*ht.ny+up(ht.a fluxz)*ht.nz

W/m^2

Internal normal convective heat flux, upside

Boundaries 8, 13, 18, 26, 31, 37, 42, 47, 53, 62, 67, 72, 78, 83, 90, 96, 102, 108, 115, 120, 125, 131, 139

ht.naflux_d

down(ht.afluxx)*ht.nx+ down(ht.afluxy)*ht.ny+ down(ht.afluxz)*ht.nz

W/m^2

Internal normal convective heat flux, downside

Boundaries 8, 13, 18, 26, 31, 37, 42, 47, 53, 62, 67, 72, 78, 83, 90, 96, 102, 108, 115, 120, 125, 131, 139

ht.ndflux

mean(ht.dfluxx)*ht.nx+ mean(ht.dfluxy)*ht.ny+ mean(ht.dfluxz)*ht.nz

W/m^2

Normal conductive heat flux, extrapolated

Boundaries 1–144

ht.ndflux_u

up(ht.dfluxx)*ht.nx+up( ht.dfluxy)*ht.ny+up(ht. dfluxz)*ht.nz

W/m^2

Internal normal conductive heat flux, extrapolated, upside

Boundaries 8, 13, 18, 26, 31, 37, 42, 47, 53, 62, 67, 72, 78, 83, 90, 96, 102, 108, 115, 120, 125, 131, 139

ht.ndflux_d

down(ht.dfluxx)*ht.nx+ down(ht.dfluxy)*ht.ny+ down(ht.dfluxz)*ht.nz

W/m^2

Internal normal conductive heat flux, extrapolated, downside

Boundaries 8, 13, 18, 26, 31, 37, 42, 47, 53, 62, 67, 72, 78, 83, 90, 96, 102, 108, 115, 120,

15

Name

Expression

Unit

Description

Selection 125, 131, 139

ht.ntflux

ht.ndflux+ht.ntrlflux+ht. naflux

W/m^2

Normal total heat flux, extrapolated

Boundaries 1–144

ht.ntflux_u

ht.ndflux_u+ht.ntrlflux_ u+ht.naflux_u

W/m^2

Internal normal total flux, extrapolated, upside

Boundaries 8, 13, 18, 26, 31, 37, 42, 47, 53, 62, 67, 72, 78, 83, 90, 96, 102, 108, 115, 120, 125, 131, 139

ht.ntflux_d

ht.ndflux_d+ht.ntrlflux_ d+ht.naflux_d

W/m^2

Internal normal total flux, extrapolated, downside

Boundaries 8, 13, 18, 26, 31, 37, 42, 47, 53, 62, 67, 72, 78, 83, 90, 96, 102, 108, 115, 120, 125, 131, 139

ht.nteflux

mean(ht.tefluxx)*ht.nx+ mean(ht.tefluxy)*ht.ny+ mean(ht.tefluxz)*ht.nz

W/m^2

Normal total energy flux, extrapolated

Boundaries 1–144

ht.nteflux_u

up(ht.tefluxx)*ht.nx+up (ht.tefluxy)*ht.ny+up(ht .tefluxz)*ht.nz

W/m^2

Internal normal total energy flux, extrapolated, upside

Boundaries 8, 13, 18, 26, 31, 37, 42, 47, 53, 62, 67, 72, 78, 83, 90, 96, 102, 108, 115, 120, 125, 131, 139

ht.nteflux_d

down(ht.tefluxx)*ht.nx+ down(ht.tefluxy)*ht.ny+ down(ht.tefluxz)*ht.nz

W/m^2

Internal normal total energy flux, extrapolated, downside

Boundaries 8, 13, 18, 26, 31, 37, 42, 47, 53, 62, 67, 72, 78, 83, 90, 96, 102, 108, 115, 120, 125, 131, 139

ht.Qbtot

0

W/m^2

Total boundary heat

Boundaries

16

Name

Expression

Unit

Description

Selection

source

1–144

ht.k_effxx

ht.kxx

W/(m*K)

Effective thermal conductivity, xx component

Domains 1– 24

ht.k_effyx

ht.kyx

W/(m*K)

Effective thermal conductivity, yx component

Domains 1– 24

ht.k_effzx

ht.kzx

W/(m*K)

Effective thermal conductivity, zx component

Domains 1– 24

ht.k_effxy

ht.kxy

W/(m*K)

Effective thermal conductivity, xy component

Domains 1– 24

ht.k_effyy

ht.kyy

W/(m*K)

Effective thermal conductivity, yy component

Domains 1– 24

ht.k_effzy

ht.kzy

W/(m*K)

Effective thermal conductivity, zy component

Domains 1– 24

ht.k_effxz

ht.kxz

W/(m*K)

Effective thermal conductivity, xz component

Domains 1– 24

ht.k_effyz

ht.kyz

W/(m*K)

Effective thermal conductivity, yz component

Domains 1– 24

ht.k_effzz

ht.kzz

W/(m*K)

Effective thermal conductivity, zz component

Domains 1– 24

ht.C_eff

ht.rho*ht.Cp

J/(m^3*K)

Effective volumetric heat capacity

Domains 1– 24

ht.ux

0

m/s

Velocity field, x component

Domains 1– 24

ht.uy

0

m/s

Velocity field, y component

Domains 1– 24

ht.uz

0

m/s

Velocity field, z component

Domains 1– 24

ht.gradTx

Tx

K/m

Temperature gradient, x component

Domains 1– 24

ht.gradTy

Ty

K/m

Temperature gradient,

Domains 1–

17

Name

Expression

Unit

Description

Selection

y component

24

ht.gradTz

Tz

K/m

Temperature gradient, z component

Domains 1– 24

ht.Qltot

0

W/m

Total line heat source

Edges 1–288

ht.Qptot

0

W

Total point heat source

Points 1–192

ht.alphaTdxx

ht.k_effxx/ht.C_eff

m^2/s

Thermal diffusivity, xx component

Domains 1– 24

ht.alphaTdyx

ht.k_effyx/ht.C_eff

m^2/s

Thermal diffusivity, yx component

Domains 1– 24

ht.alphaTdzx

ht.k_effzx/ht.C_eff

m^2/s

Thermal diffusivity, zx component

Domains 1– 24

ht.alphaTdxy

ht.k_effxy/ht.C_eff

m^2/s

Thermal diffusivity, xy component

Domains 1– 24

ht.alphaTdyy

ht.k_effyy/ht.C_eff

m^2/s

Thermal diffusivity, yy component

Domains 1– 24

ht.alphaTdzy

ht.k_effzy/ht.C_eff

m^2/s

Thermal diffusivity, zy component

Domains 1– 24

ht.alphaTdxz

ht.k_effxz/ht.C_eff

m^2/s

Thermal diffusivity, xz component

Domains 1– 24

ht.alphaTdyz

ht.k_effyz/ht.C_eff

m^2/s

Thermal diffusivity, yz component

Domains 1– 24

ht.alphaTdzz

ht.k_effzz/ht.C_eff

m^2/s

Thermal diffusivity, zz component

Domains 1– 24

ht.alphaTdMean

ht.kmean/ht.C_eff

m^2/s

Mean thermal diffusivity

Domains 1– 24

ht.gamma

1

1

Ratio of specific heats

Domains 1– 24

ht.helem

h

m

Element size

Domains 1– 24

ht.res_T

-ht.k_effxx*d(Tx,x)ht.k_effxy*d(Tx,y)ht.k_effxz*d(Tx,z)ht.k_effyx*d(Ty,x)ht.k_effyy*d(Ty,y)ht.k_effyz*d(Ty,z)ht.k_effzx*d(Tz,x)ht.k_effzy*d(Tz,y)ht.k_effzz*d(Tz,z)(ht.qs+ht.qs_oop)*T+ht.

W/m^3

Equation residual

Domains 1– 24

18

Name

Expression

Unit

Description

Selection

rho*ht.Cp*(ht.ux*Tx+ht .uy*Ty+ht.uz*Tz)-ht.Qht.Qoop Shape functions Name Shape function

Unit Description

Shape frame

Selection

T

K

Material

Domains 1–24

Lagrange (Quadratic)

Temperatur e

Weak expressions Weak expression

Integration frame

Selection

-(ht.k_effxx*Tx+ht.k_effxy*Ty+ht.k_effxz*Tz)*test(Tx)(ht.k_effyx*Tx+ht.k_effyy*Ty+ht.k_effyz*Tz)*test(Ty)(ht.k_effzx*Tx+ht.k_effzy*Ty+ht.k_effzz*Tz)*test(Tz)

Material

Domains 1–24

-ht.rho*ht.Cp*(ht.ux*Tx+ht.uy*Ty+ht.uz*Tz)*test(T)

Material

Domains 1–24

ht.streamline

Material

Domains 1–24

19

1.4.2

Thermal Insulation 1

Thermal Insulation 1 Selection

Geometric entity level

Boundary

Selection

Boundaries 6–7, 9–12, 14–17, 19–25, 27–30, 32–36, 38–41, 43–46, 48–52, 54–61, 63–66, 68–71, 73–77, 79–82, 84–89, 91–95, 97–101, 103–107, 109–114, 116–119, 121–124, 126–130, 132–138, 140–143

Equations

20

1.4.3

Initial Values 1

Initial Values 1 Selection

Geometric entity level

Domain

Selection

Domains 1–24

Settings Settings

Description

Value

Temperature 293.15[K]

21

1.4.4

Heat Source 1

Heat Source 1 Selection

Geometric entity level

Domain

Selection

Domains 2–24

Equations

Settings Settings

Description

Value

Heat source

Total power

Total power 1.5

22

Variables Name

Expression

Unit

Description

Selection

ht.Qtot

ht.hs1.Q

W/m^3

Total heat source

Domains 2–24

ht.hs1.Ptot

1.5

W

Total power

Domains 2–24

ht.hs1.vol

ht.hs1.intvol(ht.hs1.varInt)

m^3

Volume

Domains 2–24

ht.hs1.Q

ht.hs1.Ptot/ht.hs1.vol

W/m^3

Heat source

Domains 2–24

Weak expressions Weak expression

Integration frame

Selection

ht.hs1.Q*test(T)

Material

Domains 2–24

1.4.5

Heat Flux 1

Heat Flux 1 Selection

Geometric entity level

Boundary

Selection

Boundaries 1–5, 144 23

Equations

Settings Settings

Description

Value

Heat flux

Inward heat flux

Heat transfer coefficient

20

External temperature

293.15[K]

Variables Name

Expression

Unit

Description

Selection

ht.q0

ht.hf1.q0

W/m^2

Inward heat flux

Boundaries 1–5, 144

ht.hf1.h

20

W/(m^2*K)

Heat transfer coefficient

Boundaries 1–5, 144

ht.hf1.Text

293.15[K]

K

External temperature

Boundaries 1–5, 144

ht.hf1.q0

ht.hf1.h*(ht.hf1.Text-T)

W/m^2

Inward heat flux

Boundaries 1–5, 144

Weak expressions Weak expression

Integration frame

Selection

ht.hf1.q0*test(T)

Material

Boundaries 1–5, 144

1.5 Mesh 1 Mesh statistics

Property

Value

Minimum element quality

0.0924

Average element quality

0.7641

Tetrahedral elements

66584

Triangular elements

18368

Edge elements

1626

Vertex elements

192

24

Mesh 1

1.5.1

Size (size)

Settings

Name

Value

Maximum element size

0.0020

Minimum element size

2.0E-5

Resolution of curvature

0.2

Maximum element growth rate

1.3

Predefined size

Extremely fine

1.5.2

Free Tetrahedral 1 (ftet1)

Selection

Geometric entity level

Remaining

25

Study 1 1.6 Stationary Study settings

Property

Value

Include geometric nonlinearity

Off

Mesh selection

Geometry

Mesh

Geometry 1 (geom1) mesh1 Physics selection

Physics

Discretization

Heat Transfer in Solids (ht) physics

1.7 Solver Configurations 1.7.1

Solver 1

Compile Equations: Stationary (st1) Study and step

Name

Value

Use study

Study 1

Use study step

Stationary

Dependent Variables 1 (v1) General

Name

Value

Defined by study step Stationary Initial values of variables solved for

Name

Value

Solution Zero Values of variables not solved for

Name

Value

Solution Zero 26

mod1.T (mod1_T) General

Name

Value

Field components mod1.T Stationary Solver 1 (s1) General

Name

Value

Defined by study step Stationary Log

Stationary Solver 1 in Solver 1 started at 9-Feb-2018 18:11:09. Linear solver Number of degrees of freedom solved for: 105942. Symmetric matrices found. Format not changed since SOR line uses nonsymmetric storage. Scales for dependent variables: mod1.T: 2.9e+002 Iter     Damping    Stepsize #Res #Jac #Sol LinIt   LinErr   LinRes    1   1.0000000       0.017    1    1    1     2 4.3e-006    0.001 Stationary Solver 1 in Solver 1: Solution time: 8 s.

Fully Coupled 1 (fc1) General

Name

Value

Linear solver Iterative 1 Iterative 1 (i1) Error

Name

Value

Factor in error estimate

20

Multigrid 1 (mg1) Presmoother (pr) SOR Line 1 (sl1) Main

Name

Value

Relaxation factor 0.4 Secondary

27

Name

Value

Relaxation factor 0.3 Postsmoother (po) SOR Line 1 (sl1) Main

Name

Value

Relaxation factor 0.4 Secondary

Name

Value

Number of secondary iterations

2

Relaxation factor

0.5

Coarse Solver (cs) Direct 1 (d1) General

Name

Value

Solve r

PARDISO

Information 1 (prob1) Warnings 1 (warning1) Log

There was a warning message from the linear solver. Ill-conditioned preconditioner. Increase factor in error estimate.

28

Results 1.8 Data Sets 1.8.1

Solution 1

Selection

Geometric entity level

Domain

Selection

Geometry geom1

Solution

Name

Value

Solution Solver 1 Model

Save Point Geometry 1

1.9 Tables 1.9.1

Evaluation 3D

Interactive 3D values Evaluation 3D

x

y

z

Value

0.07236 0.03416 0.0046 9

24.96569

0.07269 0.07112 0.0057 7

24.75706

29

1.10 Plot Groups 1.10.1 Temperature (ht)

Surface: Temperature (degC)

30

1.10.2 Isothermal Contours (ht)

Isosurface: Temperature (K) Arrow Volume: Total heat flux

31