Electric Vehicle Project Report [PDF]

  • 0 0 0
  • Gefällt Ihnen dieses papier und der download? Sie können Ihre eigene PDF-Datei in wenigen Minuten kostenlos online veröffentlichen! Anmelden
Datei wird geladen, bitte warten...
Zitiervorschau

MARKETING PROJECT REPORT ON A STUDY OF CUSTOMER PERCEPTION OF ELECTRIC VEHICLES IN JALANDHAR CITY

SUBMITTED TO: Sir Manpreet Singh

GNA University FOR Degree of MBA

BY Harmandeep Singh Roll No. - Gu-2018-1139

1

DECLARATION

DATE OF SUBMISSION: ___________

I Harmandeep Singh students of Sir Mandeep Singh GNA University studying in 2nd year MBA batch, hereby declare that we have completed our Research Marketing Project on Customer Perception Of Electric Vehicles In Jalandhar City during the academic year 20192020, the information submitted is true and original to the best of my knowledge.

Signature of Students Date : ________________ Place : ________________ _______________________

2

ABSTRACT Widespread adoption of electric vehicles (EVs) may contribute to the alleviation of problems such as environmental pollution, global warming and oil dependency. However, the current market penetration of EV is relatively low in spite of many governments implementing strong promotion policies. This paper presents a comprehensive review of studies on consumer preferences for EV, aiming to better inform policy-makers and give direction to further research. First, we compare the economic and psychological approach towards this topic, followed by a conceptual framework of EV preferences which is then implemented to organise our review. We also briefly review the modelling techniques applied in the selected studies. Estimates of consumer preferences for financial, technical, infrastructure and policy attributes are then reviewed. A categorisation of influential factors for consumer preferences into groups such as socio-economic variables, psychological factors, mobility condition, social influence, etc. is then made and their effects are elaborated. Finally, we discuss a research agenda to improve EV consumer preference studies and give recommendations for further research.

3

INDEX CONTENTS S no. 1. 2.

Topic Objective Executive Summary

Page no. 5 6

3.

Introduction  About Electric Vehicles  Mechanical  About Hybrid Electric Vehicle  Charging About Hybrid Electric Vehicle Environmental Impact of Electric and Hybrid Vehicle Research Methodology  Questionnaire format Analysis of the Data Conclusion

7-10

4. 5. 6. 7. 8.

4

11-12 13 14-28 29 30

OBJECTIVE        

To study the perceptions and expectations of potential, for alternative technologies in automobiles, such as Electric/Hybrid Vehicles. To know why electric vehicle couldn‘t get enough consumer attraction To study the willingness of buyers of considering Electric/Hybrid Vehicles as a practical commuting option and at when. To study the maximum price consumers can afford for buying an Electric/Hybrid Vehicles To study the other options available for Range Anxious Consumer with respect to existing batteries used in Electric/Hybrid Vehicles To study the Government initiatives taken for promoting Electric/Hybrid Vehicles and subsidies provided on Electric Vehicle batteries. To study the current expectations of consumers with respect to Electric/Hybrid Vehicles, this will lead to its potential for future. To study the current threats, this is causing slow growth of Electric/Hybrid Vehicles.

5

EXECUTIVE SUMMARY India today is one of the top ten automotive markets in the world and given its burgeoning middle class population with buying potential and the steady economic growth, accelerating automotive sales is expected to continue. In the last couple of years, there has been a lot of discussion around the prices of fuel – apart from the deregulation of petrol prices. Moreover the threat of disruption of supplies from the Middle-East has heightened the debate on energy security and brought the focus on to alternate drivetrain technologies. The potential for alternative technologies in automobiles such as electric vehicles (EV) in India, as in the case of many other comparable markets, depends on improved battery technologies, driving ranges, government incentives, regulations, lower prices and better charging infrastructure. There seems to be a lot of interest on the part of Internal Combustion Engine (ICE) based manufacturers to adopt electric technology, not just supplemental to the ICE, but as a standalone offering. There are also specialized EV manufacturers that have come up all over the world. While many of the factors that influence the EV market are understood intellectually, we carried out a consumer survey to study perceptions and expectations of potential for alternative technologies in automobiles such as electric vehicles (EV) and hybrid EV. Assessing future demand for electric vehicles was somewhat challenging since it meant testing consumer preferences for a product with which they are largely unfamiliar. For this reason, we focused on uncovering consumers‘ familiarity with EV technologies and products; with their opinions around price, brand, range, charging, the infrastructure, and the cost of ownership; and with the consumer‘s imagined ―fit‖ of an EV in his or her lifestyle given a range of demographic parameters.

6

About Electric Vehicles During the last few decades, environmental impact of the petroleum-based transportation infrastructure, along with the peak oil, has led to renewed interest in an electric transportation infrastructure. Electric vehicles differ from fossil fuel-powered vehicles in that the electricity they consume can be generated from a wide range of sources, including fossil fuels, nuclear power, and renewable sources such as tidal power, solar power, and wind power or any combination of those. An electric vehicle (EV), also referred to as an electric drive vehicle, uses one or more electric motors or traction motors for propulsion. Three main types of electric vehicles exist, those that are directly powered from an external power station, those that are powered by stored electricity originally from an external power source, and those that are powered by an on-board electrical generator, such as an internal combustion engine (a hybrid electric vehicle) or a hydrogen fuel cell. Electric vehicles include electric cars, electric trains, electric lorries, electric aeroplanes, electric boats, electric motorcycles and scooters and electric spacecraft. Proposals exist for electric tanks, diesel submarines operating on battery power are, for the duration of the battery run, electric submarines, and some of the lighter UAVs are electricallypowered. Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not be achieved by the gasoline cars of the time. The internal combustion engine (ICE) is the dominant propulsion method for motor vehicles but electric power has remained commonplace in other vehicle types, such as trains and smaller vehicles of all types. A hybrid electric vehicle combines a conventional (usually fossil fuel-powered) powertrain with some form of electric propulsion. Common examples include hybrid electric cars such as the Toyota Prius. The Chevrolet Volt is an example of a production Extended Range Plug-In Electric Vehicle. Electric motor The power of a vehicle electric motor, as in other vehicles, is measured in kilowatts (kW). 100 kW is roughly equivalent to 134 horsepower, although most electric motors deliver full torque over a wide RPM range, so the performance is not equivalent, and far exceeds a 134 horsepower (100 kW) fuel-powered motor, which has a limited torque curve. Usually, direct current (DC) electricity is fed into a DC/AC inverter where it is converted to alternating current (AC) electricity and this AC electricity is connected to a 3-phase AC motor. For electric trains, DC motors are often used. Electromagnetic radiation Electromagnetic radiation from high performance electrical motors has been claimed to be associated with some human ailments, but such claims are largely unsubstantiated except for extremely high exposures. Electric motors can be

7

shielded within a metallic Faraday cage, but this reduces efficiency by adding weight to the vehicle, while it is not conclusive that all electromagnetic radiation can be contained.

Mechanical Electric motors are mechanically very simple. Electric motors often achieve 90% energy conversion efficiency over the full range of speeds and power output and can be precisely controlled. They can also be combined with regenerative braking systems that have the ability to convert movement energy back into stored electricity. This can be used to reduce the wear on brake systems (and consequent brake pad dust) and reduce the total energy requirement of a trip. Regenerative braking is especially effective for start-and-stop city use. They can be finely controlled and provide high torque from rest, unlike internal combustion engines, and do not need multiple gears to match power curves. This removes the need for gearboxes and torque converters. Electric vehicles provide quiet and smooth operation and consequently have less noise and vibration than internal combustion engines. While this is a desirable attribute, it has also evoked concern that the absence of the usual sounds of an approaching vehicle poses a danger to blind, elderly and very young pedestrians. To mitigate this situation, automakers and individual companies are developing systems that produce warning sounds when electric vehicles are moving slowly, up to a speed when normal motion and rotation (road, suspension, electric motor, etc.) noises become audible. Energy efficiency Electric vehicle 'tank-to-wheels' efficiency is about a factor of 3 higher than internal combustion engine vehicles. Energy is not consumed while the vehicle is stationary, unlike internal combustion engines which consume fuel while idling. However, looking at the well-to-wheel efficiency of electric vehicles, their total emissions, while still lower, are closer to an efficient gasoline or diesel in most countries where electricity generation relies on fossil fuels. It is worth noting that well-to-wheel efficiency of an electric vehicle has far less to do with the vehicle itself and more to do with the method of electricity production. A particular electric vehicle would instantly become twice as efficient if electricity production were switched from fossil fuel to a wind or tidal primary source of energy. Thus when "well-to-wheels" is cited, one should keep in mind that the discussion is no longer about the vehicle, but rather about the entire energy supply infrastructure in the case of fossil fuels this should also include energy spent on exploration, mining, refining, and distribution. Types of Batteries

8

Previously banks of conventional lead-acid car batteries were commonly used for EV propulsion. Then later the 75 watt-hour/kilogram lithium ion polymer battery prototypes came. The newer Li-poly cells provide up to 130 watt-hour/kilogram and last through thousands of charging cycles. Efficiency Because of the different methods of charging possible, the emissions produced have been quantified in different ways. Plug-in all-electric and hybrid vehicles also have different consumption characteristics. Range Many electric designs have limited range, due to the low energy density of batteries compared to the fuel of internal combustion engined vehicles. Electric vehicles also often have long recharge times compared to the relatively fast process of refuelling a tank. This is further complicated by the current scarcity of public charging stations. "Range anxiety" is a label for consumer concern about EV range. Lead- Acid Battery Li-ion Polymer Battery

Charging Grid capacity: If a large proportion of private vehicles were to convert to grid electricity it would increase the demand for generation and transmission, and consequent emissions. However, overall energy consumption and emissions would diminish because of the higher efficiency of electric vehicles over the entire cycle. Stabilization of the grid: Since electric vehicles can be plugged into the electric grid when not in use, there is a potential for battery powered vehicles to even out the demand for electricity by feeding electricity into the grid from their batteries during peak use periods (such as mid-afternoon air conditioning use) while doing most of their charging at night, when there is unused generating capacity. This vehicle-to-grid (V2G) connection has the potential to reduce the need for new power plants, as long as vehicle owners do not mind their batteries being drained during the day by the power company prior to needing to use their vehicle for a return-commute home in the evening.

9

Furthermore, our current electricity infrastructure may need to cope with increasing shares of variable-output power sources such as windmills and PV solar panels. This variability could be addressed by adjusting the speed at which EV batteries are charged, or possibly even discharged. Some concepts see battery exchanges and battery charging stations, much like gas/petrol stations today. Clearly these will require enormous storage and charging potentials, which could be manipulated to vary the rate of charging, and to output power during shortage periods, much as diesel generators are used for short periods to stabilize some national grids. Heating of electric vehicles: In cold climates, considerable energy is needed to heat the interior of a vehicle and to defrost the windows. With internal combustion engines, this heat already exists as waste combustion heat diverted from the engine cooling circuit. This process offsets the greenhouse gases external costs. If this is done with battery electric vehicles, the interior heating requires extra energy from the vehicles batteries. Although some heat could be harvested from the motor(s) and battery, their greater efficiency means there is not as much waste heat available as from a combustion engine. However, for vehicles which are connected to the grid, battery electric vehicles can be preheated, or cooled, with little or no need for battery energy, especially for short trips. Newer designs are focused on using super-insulated cabins which can heat the vehicle using the body heat of the passengers. This is not enough, however, in colder climates as a driver delivers only about 100 W of heating power. A reversible ACsystem, cooling the cabin during summer and heating it during winter, seems to be the most practical and promising way of solving the thermal management of the EV. Ricardo Arboix introduced (2008) a new concept based on the principle of combining the thermal-management of the EV-battery with the thermal-management of the cabin using a reversible AC-system. This is done by adding a third heat-exchanger, thermally connected with the battery-core, to the traditional heat pump/air conditioning system used in previous EVmodels like the GM EV1 and Toyota RAV4 EV. The concept has proven to bring several benefits, such as prolonging the lifespan of the battery as well as improving the performance and overall energyefficiency of the EV.

About Hybrid Electric Vehicle

10

A hybrid electric vehicle combines a conventional (usually fossil fuel-powered) powertrain with some form of electric propulsion. Common examples include hybrid electric cars such as the Toyota Prius. The Chevrolet Volt is an example of a production Extended Range Plug-In Electric Vehicle. Mopeds, electric bicycles, and even electric kick scooters are a simple form of a hybrid, as power is delivered both via an internal combustion engine or electric motor and the rider's muscles. Early prototypes of motorcycles in the late 19th century used the same principles. 



In a parallel hybrid bicycle human and motor power are mechanically coupled at the pedal drive train or at the rear or the front wheel, e.g. using a hub motor, a roller pressing onto a tire, or a connection to a wheel using a transmission element. Human and motor torques are added together. Almost all manufactured models are of this type. See Motorized bicycles, Mopeds and for more information. In a series hybrid bicycle (SH) the user powers a generator using the pedals. This is converted into electricity and can be fed directly to the motor giving a chainless bicycle but also to charge a battery. The motor draws power from the battery and must be able to deliver the full mechanical torque required because none is available from the pedals. SH bicycles are commercially available, because they are very simple in theory and manufacturing.

Hybrid fuel (dual mode) Ford Escape Hybrid the first hybrid electric vehicle with a flexible fuel capability to run on E85(ethanol). In addition to vehicles that use two or more different devices for propulsion, some also consider vehicles that use distinct energy sources or input types ("fuels") using the same engine to be hybrids, although to avoid confusion with hybrids as described above and to use correctly the terms, these are perhaps more correctly described as dual mode vehicles: 

 



Some electric trolleybuses can switch between an on board diesel engine and overhead electrical power depending on conditions (see dual mode bus). In principle, this could be combined with a battery subsystem to create a true plug-in hybrid trolleybus, although as of 2006, no such design seems to have been announced. Flexible-fuel vehicles can use a mixture of input fuels mixed in one tank — typically gasoline and ethanol, or methanol, or biobutanol. Bi-fuel vehicle:Liquified petroleum gas and natural gas are very different from petroleum or diesel and cannot be used in the same tanks, so it would be impossible to build an (LPG or NG) flexible fuel system. Instead vehicles are built with two, parallel, fuel systems feeding one engine. While the duplicated tanks cost space in some applications, the increased range and flexibility where (LPG or NG) infrastructure is incomplete may be a significant incentive to purchase. Power-assist mechanisms for bicycles and other human-powered vehicles are also included (see Motorized bicycle).

Environmental Impact of Electric and Hybrid Vehicle

11

Environmental impact of electric vehicles Due to efficiency of electric engines as compared to combustion engines, even when the electricity used to charge electric vehicles comes from a CO2-emitting source, such as a coal- or gasfired powered plant, the net CO2 production from an electric car is typically one-half to one-third of that from a comparable combustion vehicle. Electric vehicles release almost no air pollutants at the place where they are operated. In addition, it is generally easier to build pollution-control systems into centralised power stations than retrofit enormous numbers of cars. Electric vehicles typically have less noise pollution than an internal combustion engine vehicle, whether it is at rest or in motion. Electric vehicles emit no tailpipe CO2 or pollutants such as NOx, NMHC, CO and PM at the point of use. Electric motors don't require oxygen, unlike internal combustion engines; this is useful for submarines. While electric and hybrid cars have reduced tailpipe carbon emissions, the energy they consume is sometimes produced by means that have environmental impacts. For example, the majority of electricity produced in the United States comes from fossil fuels (coal and natural gas), so use of an electric vehicle in the United States would not be completely carbon neutral. Electric and hybrid cars can help decrease energy use and pollution, with local no pollution at all being generated by electric vehicles, and may someday use only renewable resources, but the choice that would have the lowest negative environmental impact would be a lifestyle change in favour of walking, biking, use of public transit or telecommuting. Governments may invest in research and development of electric cars with the intention of reducing the impact on the environment, where they could instead develop pedestrian-friendly communities or electric mass transit. Environmental impact of hybrid car battery Though hybrid cars consume less fuel than conventional cars, there is still an issue regarding the environmental damage of the hybrid car battery. Today most hybrid car batteries are one of two types: 1) Nickel metal hydride, or 2) Lithium ion; both are regarded as more environmentally friendly than lead-based batteries which constitute the bulk of petro car starter batteries today. There are many types of batteries. Some are far more toxic than others. Lithium ion is the least toxic of the three mentioned above. The toxicity levels and environmental impact of nickel metal hydride batteries—the type currently used in hybrids—are much lower than batteries like lead acid or nickel cadmium. However, nickel-based batteries are known carcinogens, and have been shown to cause a variety of teratogenic effects. The Lithium-ion battery has attracted attention due to its potential for use in hybrid electric vehicles. Hitachi is a leader in its development. In addition to its smaller size

12

and lighter weight, lithium-ion batteries deliver performance that helps to protect the environment with features such as improved charge efficiency without memory effect. The lithium-ion batteries are appealing because they have the highest energy density of any rechargeable batteries and can produce a voltage more than three times that of nickel–metal hydride battery cell while simultaneously storing large quantities of electricity as well. The batteries also produce higher output (boosting vehicle power), higher efficiency (avoiding wasteful use of electricity), and provides excellent durability, compared with the life of the battery being roughly equivalent to the life of the vehicle. Additionally, use of lithium-ion batteries reduces the overall weight of the vehicle and also achieves improved fuel economy of 30% better than petro-powered vehicles with a consequent reduction in CO2 emissions helping to prevent global warming. Raw materials increasing costs There is an impending increase in the costs of many rare materials used in the manufacture of hybrid cars. For example, the rare earth element dysprosium is required to fabricate many of the advanced electric motors and battery systems in hybrid propulsion systems. Neodymium is another rare earth metal which is a crucial ingredient in high-strength magnets that are found in permanent magnet electric motors. Nearly all the rare earth elements in the world come from China, and many analysts believe that an overall increase in Chinese electronics manufacturing will consume this entire supply by 2012. In addition, export quotas on Chinese rare earth elements have resulted in an unknown amount of supply. A few non-Chinese sources such as the advanced Hoidas Lake project in northern Canada as well as Mount Weld in Australia are currently under development; however, the barriers to entry are high and require years to go online.

RESEARCH METHODOLOGY

13

The main purpose behind the study was to meet the wants and needs of the consumers and provide valuable information regarding Electric/Hybrid Vehicle. Also to know whether the consumers Primary data The first hand data was collected by us through various sources. Sources of primary data are the sampling units chosen. Sample size: For the present study 60 respondents were selected. Sampling technique: For selecting required respondents simple random sampling technique was used. Tools and techniques: Tools for collecting primary data Interview method: A Questionnaire of 16 Questions was prepared for which appropriate options were made available for respondents to select from. The questionnaire was created with the help of Google Docs which was in a format of Electronic Survey Form. It was easy to send the form via mail to n number of users. Apart from this the Questionnaire was easily uploaded on various social networking sites. Observation: It was easy for respondent to fill up the questionnaire and submit it online, the result of which was saving of time and reach maximum respondents. Secondary data These are second hand readymade data collected by some other agency but not by the researcher. Source could be internal or external records. Secondary data gives the detailed information about the company. The main detail about when the company was started, where the company was started, first etc. the secondary data gives all information which is unavailable in primary data. Sources of secondary data: Journals, Internet, Newspaper and Reports were used.

The following is the questionnaire format

14

Hello we the students of GNA University, 2nd year MBA batch are gathering information related to acceptance and knowledge of people about alternative technologies in Electric automobiles for our Marketing project. Please help us by filling up this questionnaire which will take 10-15 minutes.

Please put a () mark against each option where ever required. Your Profession: Retired  House wife  Student  Other (please specify) _____________  Job  Self Employed

Gender:  Female  Male

1) Do you have any vehicle? Yes   No  If yes total no. of vehicles ____

2) Is it a  SUV  Sedan   Hatch Back   Three Wheeler   Two Wheeler 

15

 Other (please specify) ___________  Pickup Truck   MUV 

3) Is most of your daily travelling in city, on the highway or mixed?  Mixed  Highway   City

4) Also let us know the mode of transportation you prefer and approx. distance travelled.  Train  Public Bus   Taxi/Auto Rickshaw   Own Vehicle   Other (please specify) _____________  >200 km 