Electric Machine NVH Simulation & Accurately Predict Automotive Aeroacoustic Noise [PDF]

  • 0 0 0
  • Gefällt Ihnen dieses papier und der download? Sie können Ihre eigene PDF-Datei in wenigen Minuten kostenlos online veröffentlichen! Anmelden
Datei wird geladen, bitte warten...
Zitiervorschau

Electric Machine NVH Simulation & Accurately Predict Automotive Aeroacoustic Noise 流程演示

Wayne.Dai / 戴偉修 Joe.Chen / 陳建佑

Many Noise Sources: • Electromagnetic • Stator Tooth Forces • Magnetic Unbalance (UMP) • Inverter Switching Noise • Mechanical • Gears, Bearings • Road Noise • Load variation • Aero-Acoustic • Wind Noise • Fan/Pump/Flow

Affects Product Quality - Real and Perceived Poor NVH = Low Quality

One of Many Req’s: • System Performance • Overall Torque & Power • Efficiency / Fuel Economy • Many Operating Points • Packaging • Volume and Aspect Ratio • Weight • Durability • Stress, Fatigue • Temperature Cycling • NVH • Vibration & Acoustic • Cost • Materials + Engineering + Time

- Noise - Vibration - Harshness

RPM

Electric Machine NVH – What and Why?

Frequency [Hz]

Multiphysics Workflow of Simulation Electromagnetic Field

Structural Dynamics

Sound Experience

Mechanical VRXPERIENCE Sound

Single-RPM ERP Level Multiple-RPM

Maxwell

SPL

Step 1 : 計算定子齒部的受力 磁場計算結果

電磁力分佈

+ 驅動器切換頻率 + 轉子偏心or不對稱的電磁力 + 2Dor3D模擬;分數or全模型

Step 2 : 將電磁力導入Mechanical ∆𝑇 =

Time-Step Definition

Object Based

𝑇𝑒𝑙 𝑁

N - Total number of time-steps within one electrical period/cycle

Maximum Frequency Range 𝐹𝑚𝑎𝑥 =

1 ∆𝑇 ∗ 2

Element Based Advanced Time Window Definition Number of repeated sample windows = 𝑘

Number of cycles/periods (related to force) = 𝑙 Minimum Frequency Range

Step 3 : 結構分析

Static and Modal

Geometry and Meshing • Bolt Pretension • Static Prestress • Modal Analysis (Free Vibration) • Contacts, Joints, Bearings, Coils, Damping

Assembly weight

固定端

Harmonic

ERP vs Frequency and RPM

Multiple Load Sources e.g. Gear Force Spectrum e.g. Fluid Wall Pressure

*ERP = Equivalent Radiated Power

Step 4 : ANSYS Mechanical 模擬結果 • 根據經典電機噪音模擬流程,完成 從Maxwell到Mechanical Acoustics 的模擬工作。 ERP Level

SPL

• 從Harmonic Response分析模組中得到 ERP level waterfall 結果,或從Harmonic Acoustics 分析模組中得到 SPL waterfall 結果 • 右鍵導入 VRXPERIENCE Sound Pro ( export to VRXEPRIENCE Sound Pro)

7

© 2020 Ansys, Inc. / Confidential

Step 5 : 將模擬結果導入 VRXPERIENCE Sound Pro • 打開 VRXPERIENCE Sound Pro 軟體 • 文件/File > /打開/Open 從Mechanical模 組中匯出的模擬結果,通常為 xml 文件

E-motor EPR Demo.xml

• 設定需要創建聲音的長度( duration ),並設置合適的採樣頻率 ( sampling frequency )以防止不必要的信號混疊現象 • 點擊合成( synthesize ),等待聲音的檔的導入生成

8

© 2020 Ansys, Inc. / Confidential

Step 6 : 重播體驗模擬結果 重播控制台 • 使用重播控制台來重播及體 驗創建出來的模擬音效檔 • 如果在播放過程中聲音的音 量過大,軟體會自動開啟保 護模式(Safety mode)將系 統靜音。此時,請手動減小 聲音增益,並點擊 Clipping 和 MUTE 來重置系統 調整聲音增益

9

© 2020 Ansys, Inc. / Confidential

Step 7 : 信號的時頻譜Time – frequency閱覽 • 在時域信號視窗中右鍵 計算時頻瀑布圖 • 使用顯示調整工具( Color Scale )來調 整視頻圖的顯示效果

10

© 2020 Ansys, Inc. / Confidential

Step 8 : 心理聲學指標計算 • 重新回到聲音的時域信號視窗 • 點擊 模組/Modules > 心理聲學/Psychoacoustics > 指標/Indicators 啟動心理聲學指標計算介面

• 選擇感興趣的心理聲 學指標及的需要分析 的信號,然後點擊計 算/compute 得到相應 的結果

11

© 2020 Ansys, Inc. / Confidential

Step 9 : 導入傳遞函數 • 重新回到聲音的時域信號窗口,點擊 工具/Tools > 濾波/ Frequency filtering 打開濾波器界面

CABIN_Transfer_Function.csv

12

© 2020 Ansys, Inc. / Confidential

Step 10 : 階次識別及提取

• 在時間-階次顯示窗口中右鍵 導出階次功能(Export the level of some order) • 以8階作爲間隔/step ,100%的 階次帶寬/band,導出8到200 階之間的重要階次 • 文件/File > 導出整車聲音模擬 階次文件/Export orders to Car Sound Simulator file format

13

© 2020 Ansys, Inc. / Confidential

Step 11 : 導入車內氣動及輪胎行駛噪聲 • 文件File > 打開/Open 氣動及行駛 噪聲文件‘Aero_Road_noise.wav’

• 右鍵計算信號的時頻譜/calculate the time-frequency representation

Aero_Road_noise.wav

• 文件/File > 導出整車聲音模擬背景 音/Export noise to Car Sound Simulator file format

14

© 2020 Ansys, Inc. / Confidential

Step 12 : 車內整體聲音品質體驗 電機原始模擬結果

• 點擊 模塊/Modules > 啓動整車聲音模擬工具/Car Sound Simulator Add-in • 選擇原始點擊仿真結果作爲源信號( source signal )

導出的整車聲音模擬階次 (8至200階) 導出的整車聲音模擬背景音

• 選擇剛剛導出的整車聲音模擬階次文件作爲階次輸入 (Partials file) • 選擇剛剛導出的整車聲音模擬背景音作爲背景噪聲輸 入( Noise file ) • 回放體驗車內整體聲音,幷于原始仿真結果進行比較

15

© 2020 Ansys, Inc. / Confidential

回放控制面板

ANSYS VRXPERIENCE Sound Pro 電機聯合模擬流程 VRXPERIENCE Sound 瀑布圖 - CAE 模擬

電機噪音

傳遞函數

背景雜訊

最終整體聲音 O48

O24

混合背景雜訊 Mechanical

考慮系統傳遞函數

Maxwell

體驗完整的聲音環境

隨轉速變化的電機諧回 應雜訊

預測風險

測量 或 CAE

測量 或 CAE

重播子模組雜訊 CAE

CAE

測量 或 CAE

Sound (20 s)

16

© 2020 Ansys, Inc. / Confidential

實際案例 Switch Reluctance Motor ─ NVH Workflow

Background Manufactured SRM

Simulated SRM Design

Hysteresis Control with Asymmetric Bridge SRM Inverter

18

Performance Comparison Comparison performed at the knee point of the SRM operation (209 Nm @ 2768rpm)

Remark: Due to “Stranded Coil” assumption the Inductance at the overlapping state between stator and rotor is higher Consequence: • Lower simulated current at Rising-Edge • Higher simulated current at Falling-Edge with slower Zero-Cross condition • Higher simulated flux linkage with higher simulated torque 19

Shared Geometry

20

Electromagnetic Force Transfer

Element-Based

Magnetic Flux Density Distribution

21

Surface Force Density Distribution

High Switching Frequency Force Resolution Increasing Speed

Multiple-RPM (Speed) Current Profile

Torque Profile

𝐹𝑚𝑎𝑥

22

1 = ∆𝑇 ∗ 2

𝐹𝑚𝑖𝑛 =

2 ∗ 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝑇𝑒𝑙 ∗ 𝑘 ∗ 𝑙 ∗ 2𝑝

∆𝑓 =

𝐹𝑚𝑎𝑥 𝐹𝑚𝑖𝑛

500 rpm - Characteristics

23

Rotor Frequency = (RPM/60)*12*Order Stator Frequency = (RPM/60)*18*Order

Note: “LCM = Least Common Multiple”

500 rpm 1st Mode

12th

1500 rpm 7th to 14th Modes

24

12th

3 Simulations output R1 • Baseline simulation

R2 • Optimized E-MAG control strategy (Duty)

R2b • Optimized CAD Housing thickness

25

• Open Format Spectrum or Waterfall (for each RPM, one spectra)

Generation of Sound Synthesis

From spectrum data to time domain signal (wav sound)

26

Generation of Sound Synthesis

Calulation of time-frequency reprensation

27

Generation of Sound Synthesis

Switch on RPM-frequency representation

28

Generation of Sound Synthesis

Fast listening comparison of sound

29

Waterfall Diagram and Sound Spectrum – Noise Detection

Psychoacoustic Indicators Simulated Waterfall Diagram

SPL vs Time

High Level of dB

Sharpness vs Time

1 - Clearly very sharp

2- clearly very loud

High Peak of Sharpness

Due to electromagnetic Forces

Let’s try to reduce level of red zones

Virtual modification

Due to electromagnetic Forces

Simulated Waterfall Diagram

Improvement trial :

SPL vs Time

- 10 dB on the 2 zones

Results : - reduce the peak of loudness - reduce the peak of sharpness - clearly less annoyance

Sharpness vs Time

Multiphysics Workflow of Simulation Electromagnetic Field

Structural Dynamics

Sound Experience

Mechanical VRXPERIENCE Sound

Single-RPM ERP Level Multiple-RPM

Maxwell

SPL

Aeroacoustics Fan Aeroacoustics Simulation Workflow

Aeroacoustics

Receiver Flow

• Sound is generated aerodynamically ‐ Free-space problem, no solid surfaces: Sound generated from turbulence, jet noise ‐ Free-space problem, with solid surfaces: Fan noise, airframe noise, rotor noise, boundary layer noise, cavity noise ‐ Interior problem: duct noise, mufflers, ducted fan noise

36

Propagation

Source

• Minimizing noise to meet regulatory standards and human comfort is an important design consideration for all types of rotating machinery

Fan Aeroacoustics Simulation Workflow Ansys Fluent • • •

High-fidelity modeling of fan aerodynamics Direct and integral methods for sound propagation Inbuilt post-processing for aeroacoustics

37

Ansys VRXPERIENCE Sound

Shape optimization •

Design of experiments (DOE) and shape optimization integrated in the solving process

• • • •

Signal duration extension Psychoacoustic analysis Sound design Characterization

CFD simulation Operation condition

Geometr y

Mesh

No of blades=8 Mesh Count=8 Million (Hexcore)

RPM = 2000 Time Step = 2e-5 sec Total Simulation time = 1 sec Boundary

Fan

Motor

Rotating Zone

conditions Least-square cell-based Spatial discretization :2nd order to all Momentum– Bounded central differencing

Sliding Zone Pressure outlet 38

CFD Animation- baseline design

Baseline

Modified Mic

39

Mic

40

41

42

Thank You _________

43

補充說明 ANSYS VRXPERIENCE Sound

ANSYS VRXPERIENCE Sound ─ 跨平台聲學分析工具 ✓

測試數據分析 测试数据 测试台架 真实环境测量



聲音, 振動, 轉速, 電壓, 溫度, …

VRXPERIENCE Sound

仿真數據回放及分析 MAXWELL 電磁仿真

聲壓級場, 聲壓級瀑布圖, 頻譜圖, ERP, TL, … MECHANICAL

模態分析 諧響應分析

CAE仿真數據和測試數據的聯合分析。 2019 已上線

頻譜圖,時頻分析選取,階次分析,心理聲 FLUENT 計算流體力學仿真 氣動聲學仿真

45

學分析,异響診斷,聲音合成。 2020 即將支持

© 2020 Ansys, Inc. / Confidential

ANSYS VRXPERIENCE SOUND PRO 基本功能 仿真結果 回放

聲學特性分析 采集. 分析. 編輯.設計. 報告.

回放及分析

心理聲學

3D聲效渲染

階次分析

自動分解

心理聲學指標計算

僅支持雙揚聲器

旋轉機械階次識別

濾波降噪, 特徵聲音 識別分離

46

© 2020 Ansys, Inc. / Confidential

ANSYS VRXPERIENCE Sound 更多模塊及功能 仿真數據與測試數據 聯合分析&聲音設計

3D聲音渲染回放

聲品質開發

高品質聲音重構回放體驗

心理聲學研究&主觀評價

聲音數據采集

虛擬場景交互體驗 3D高品質交互式聲音體驗

虛擬模型仿真

47

© 2020 Ansys, Inc. / Confidential

ANSYS VRXPERIENCE Sound 主要功能特徵 ANSYS VRXPERIENCE Sound 産品特徵

Pro

Premium

噪音振動的分析、回放及編輯





旋轉機械階次分析





仿真結果快速回放體驗(與ANSYS Mechanical平臺連接)





基礎心理聲學研究





主觀聲音感知測試及評價



産品聲品質評價及分析



高品質3D空間聲音模擬重現



爲駕駛模擬提供交互沉浸式的高精度聲音體驗



高級階次設計及集成 發動機聲浪增强設計及車內快速體驗 電動車主動聲音設計全方位體驗及調試

48

© 2020 Ansys, Inc. / Confidential