38 0 7MB
Electric Machine NVH Simulation & Accurately Predict Automotive Aeroacoustic Noise 流程演示
Wayne.Dai / 戴偉修 Joe.Chen / 陳建佑
Many Noise Sources: • Electromagnetic • Stator Tooth Forces • Magnetic Unbalance (UMP) • Inverter Switching Noise • Mechanical • Gears, Bearings • Road Noise • Load variation • Aero-Acoustic • Wind Noise • Fan/Pump/Flow
Affects Product Quality - Real and Perceived Poor NVH = Low Quality
One of Many Req’s: • System Performance • Overall Torque & Power • Efficiency / Fuel Economy • Many Operating Points • Packaging • Volume and Aspect Ratio • Weight • Durability • Stress, Fatigue • Temperature Cycling • NVH • Vibration & Acoustic • Cost • Materials + Engineering + Time
- Noise - Vibration - Harshness
RPM
Electric Machine NVH – What and Why?
Frequency [Hz]
Multiphysics Workflow of Simulation Electromagnetic Field
Structural Dynamics
Sound Experience
Mechanical VRXPERIENCE Sound
Single-RPM ERP Level Multiple-RPM
Maxwell
SPL
Step 1 : 計算定子齒部的受力 磁場計算結果
電磁力分佈
+ 驅動器切換頻率 + 轉子偏心or不對稱的電磁力 + 2Dor3D模擬;分數or全模型
Step 2 : 將電磁力導入Mechanical ∆𝑇 =
Time-Step Definition
Object Based
𝑇𝑒𝑙 𝑁
N - Total number of time-steps within one electrical period/cycle
Maximum Frequency Range 𝐹𝑚𝑎𝑥 =
1 ∆𝑇 ∗ 2
Element Based Advanced Time Window Definition Number of repeated sample windows = 𝑘
Number of cycles/periods (related to force) = 𝑙 Minimum Frequency Range
Step 3 : 結構分析
Static and Modal
Geometry and Meshing • Bolt Pretension • Static Prestress • Modal Analysis (Free Vibration) • Contacts, Joints, Bearings, Coils, Damping
Assembly weight
固定端
Harmonic
ERP vs Frequency and RPM
Multiple Load Sources e.g. Gear Force Spectrum e.g. Fluid Wall Pressure
*ERP = Equivalent Radiated Power
Step 4 : ANSYS Mechanical 模擬結果 • 根據經典電機噪音模擬流程,完成 從Maxwell到Mechanical Acoustics 的模擬工作。 ERP Level
SPL
• 從Harmonic Response分析模組中得到 ERP level waterfall 結果,或從Harmonic Acoustics 分析模組中得到 SPL waterfall 結果 • 右鍵導入 VRXPERIENCE Sound Pro ( export to VRXEPRIENCE Sound Pro)
7
© 2020 Ansys, Inc. / Confidential
Step 5 : 將模擬結果導入 VRXPERIENCE Sound Pro • 打開 VRXPERIENCE Sound Pro 軟體 • 文件/File > /打開/Open 從Mechanical模 組中匯出的模擬結果,通常為 xml 文件
E-motor EPR Demo.xml
• 設定需要創建聲音的長度( duration ),並設置合適的採樣頻率 ( sampling frequency )以防止不必要的信號混疊現象 • 點擊合成( synthesize ),等待聲音的檔的導入生成
8
© 2020 Ansys, Inc. / Confidential
Step 6 : 重播體驗模擬結果 重播控制台 • 使用重播控制台來重播及體 驗創建出來的模擬音效檔 • 如果在播放過程中聲音的音 量過大,軟體會自動開啟保 護模式(Safety mode)將系 統靜音。此時,請手動減小 聲音增益,並點擊 Clipping 和 MUTE 來重置系統 調整聲音增益
9
© 2020 Ansys, Inc. / Confidential
Step 7 : 信號的時頻譜Time – frequency閱覽 • 在時域信號視窗中右鍵 計算時頻瀑布圖 • 使用顯示調整工具( Color Scale )來調 整視頻圖的顯示效果
10
© 2020 Ansys, Inc. / Confidential
Step 8 : 心理聲學指標計算 • 重新回到聲音的時域信號視窗 • 點擊 模組/Modules > 心理聲學/Psychoacoustics > 指標/Indicators 啟動心理聲學指標計算介面
• 選擇感興趣的心理聲 學指標及的需要分析 的信號,然後點擊計 算/compute 得到相應 的結果
11
© 2020 Ansys, Inc. / Confidential
Step 9 : 導入傳遞函數 • 重新回到聲音的時域信號窗口,點擊 工具/Tools > 濾波/ Frequency filtering 打開濾波器界面
CABIN_Transfer_Function.csv
12
© 2020 Ansys, Inc. / Confidential
Step 10 : 階次識別及提取
• 在時間-階次顯示窗口中右鍵 導出階次功能(Export the level of some order) • 以8階作爲間隔/step ,100%的 階次帶寬/band,導出8到200 階之間的重要階次 • 文件/File > 導出整車聲音模擬 階次文件/Export orders to Car Sound Simulator file format
13
© 2020 Ansys, Inc. / Confidential
Step 11 : 導入車內氣動及輪胎行駛噪聲 • 文件File > 打開/Open 氣動及行駛 噪聲文件‘Aero_Road_noise.wav’
• 右鍵計算信號的時頻譜/calculate the time-frequency representation
Aero_Road_noise.wav
• 文件/File > 導出整車聲音模擬背景 音/Export noise to Car Sound Simulator file format
14
© 2020 Ansys, Inc. / Confidential
Step 12 : 車內整體聲音品質體驗 電機原始模擬結果
• 點擊 模塊/Modules > 啓動整車聲音模擬工具/Car Sound Simulator Add-in • 選擇原始點擊仿真結果作爲源信號( source signal )
導出的整車聲音模擬階次 (8至200階) 導出的整車聲音模擬背景音
• 選擇剛剛導出的整車聲音模擬階次文件作爲階次輸入 (Partials file) • 選擇剛剛導出的整車聲音模擬背景音作爲背景噪聲輸 入( Noise file ) • 回放體驗車內整體聲音,幷于原始仿真結果進行比較
15
© 2020 Ansys, Inc. / Confidential
回放控制面板
ANSYS VRXPERIENCE Sound Pro 電機聯合模擬流程 VRXPERIENCE Sound 瀑布圖 - CAE 模擬
電機噪音
傳遞函數
背景雜訊
最終整體聲音 O48
O24
混合背景雜訊 Mechanical
考慮系統傳遞函數
Maxwell
體驗完整的聲音環境
隨轉速變化的電機諧回 應雜訊
預測風險
測量 或 CAE
測量 或 CAE
重播子模組雜訊 CAE
CAE
測量 或 CAE
Sound (20 s)
16
© 2020 Ansys, Inc. / Confidential
實際案例 Switch Reluctance Motor ─ NVH Workflow
Background Manufactured SRM
Simulated SRM Design
Hysteresis Control with Asymmetric Bridge SRM Inverter
18
Performance Comparison Comparison performed at the knee point of the SRM operation (209 Nm @ 2768rpm)
Remark: Due to “Stranded Coil” assumption the Inductance at the overlapping state between stator and rotor is higher Consequence: • Lower simulated current at Rising-Edge • Higher simulated current at Falling-Edge with slower Zero-Cross condition • Higher simulated flux linkage with higher simulated torque 19
Shared Geometry
20
Electromagnetic Force Transfer
Element-Based
Magnetic Flux Density Distribution
21
Surface Force Density Distribution
High Switching Frequency Force Resolution Increasing Speed
Multiple-RPM (Speed) Current Profile
Torque Profile
𝐹𝑚𝑎𝑥
22
1 = ∆𝑇 ∗ 2
𝐹𝑚𝑖𝑛 =
2 ∗ 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝑇𝑒𝑙 ∗ 𝑘 ∗ 𝑙 ∗ 2𝑝
∆𝑓 =
𝐹𝑚𝑎𝑥 𝐹𝑚𝑖𝑛
500 rpm - Characteristics
23
Rotor Frequency = (RPM/60)*12*Order Stator Frequency = (RPM/60)*18*Order
Note: “LCM = Least Common Multiple”
500 rpm 1st Mode
12th
1500 rpm 7th to 14th Modes
24
12th
3 Simulations output R1 • Baseline simulation
R2 • Optimized E-MAG control strategy (Duty)
R2b • Optimized CAD Housing thickness
25
• Open Format Spectrum or Waterfall (for each RPM, one spectra)
Generation of Sound Synthesis
From spectrum data to time domain signal (wav sound)
26
Generation of Sound Synthesis
Calulation of time-frequency reprensation
27
Generation of Sound Synthesis
Switch on RPM-frequency representation
28
Generation of Sound Synthesis
Fast listening comparison of sound
29
Waterfall Diagram and Sound Spectrum – Noise Detection
Psychoacoustic Indicators Simulated Waterfall Diagram
SPL vs Time
High Level of dB
Sharpness vs Time
1 - Clearly very sharp
2- clearly very loud
High Peak of Sharpness
Due to electromagnetic Forces
Let’s try to reduce level of red zones
Virtual modification
Due to electromagnetic Forces
Simulated Waterfall Diagram
Improvement trial :
SPL vs Time
- 10 dB on the 2 zones
Results : - reduce the peak of loudness - reduce the peak of sharpness - clearly less annoyance
Sharpness vs Time
Multiphysics Workflow of Simulation Electromagnetic Field
Structural Dynamics
Sound Experience
Mechanical VRXPERIENCE Sound
Single-RPM ERP Level Multiple-RPM
Maxwell
SPL
Aeroacoustics Fan Aeroacoustics Simulation Workflow
Aeroacoustics
Receiver Flow
• Sound is generated aerodynamically ‐ Free-space problem, no solid surfaces: Sound generated from turbulence, jet noise ‐ Free-space problem, with solid surfaces: Fan noise, airframe noise, rotor noise, boundary layer noise, cavity noise ‐ Interior problem: duct noise, mufflers, ducted fan noise
36
Propagation
Source
• Minimizing noise to meet regulatory standards and human comfort is an important design consideration for all types of rotating machinery
Fan Aeroacoustics Simulation Workflow Ansys Fluent • • •
High-fidelity modeling of fan aerodynamics Direct and integral methods for sound propagation Inbuilt post-processing for aeroacoustics
37
Ansys VRXPERIENCE Sound
Shape optimization •
Design of experiments (DOE) and shape optimization integrated in the solving process
• • • •
Signal duration extension Psychoacoustic analysis Sound design Characterization
CFD simulation Operation condition
Geometr y
Mesh
No of blades=8 Mesh Count=8 Million (Hexcore)
RPM = 2000 Time Step = 2e-5 sec Total Simulation time = 1 sec Boundary
Fan
Motor
Rotating Zone
conditions Least-square cell-based Spatial discretization :2nd order to all Momentum– Bounded central differencing
Sliding Zone Pressure outlet 38
CFD Animation- baseline design
Baseline
Modified Mic
39
Mic
40
41
42
Thank You _________
43
補充說明 ANSYS VRXPERIENCE Sound
ANSYS VRXPERIENCE Sound ─ 跨平台聲學分析工具 ✓
測試數據分析 测试数据 测试台架 真实环境测量
✓
聲音, 振動, 轉速, 電壓, 溫度, …
VRXPERIENCE Sound
仿真數據回放及分析 MAXWELL 電磁仿真
聲壓級場, 聲壓級瀑布圖, 頻譜圖, ERP, TL, … MECHANICAL
模態分析 諧響應分析
CAE仿真數據和測試數據的聯合分析。 2019 已上線
頻譜圖,時頻分析選取,階次分析,心理聲 FLUENT 計算流體力學仿真 氣動聲學仿真
45
學分析,异響診斷,聲音合成。 2020 即將支持
© 2020 Ansys, Inc. / Confidential
ANSYS VRXPERIENCE SOUND PRO 基本功能 仿真結果 回放
聲學特性分析 采集. 分析. 編輯.設計. 報告.
回放及分析
心理聲學
3D聲效渲染
階次分析
自動分解
心理聲學指標計算
僅支持雙揚聲器
旋轉機械階次識別
濾波降噪, 特徵聲音 識別分離
46
© 2020 Ansys, Inc. / Confidential
ANSYS VRXPERIENCE Sound 更多模塊及功能 仿真數據與測試數據 聯合分析&聲音設計
3D聲音渲染回放
聲品質開發
高品質聲音重構回放體驗
心理聲學研究&主觀評價
聲音數據采集
虛擬場景交互體驗 3D高品質交互式聲音體驗
虛擬模型仿真
47
© 2020 Ansys, Inc. / Confidential
ANSYS VRXPERIENCE Sound 主要功能特徵 ANSYS VRXPERIENCE Sound 産品特徵
Pro
Premium
噪音振動的分析、回放及編輯
⚫
⚫
旋轉機械階次分析
⚫
⚫
仿真結果快速回放體驗(與ANSYS Mechanical平臺連接)
⚫
⚫
基礎心理聲學研究
⚫
⚫
主觀聲音感知測試及評價
⚫
産品聲品質評價及分析
⚫
高品質3D空間聲音模擬重現
⚫
爲駕駛模擬提供交互沉浸式的高精度聲音體驗
⚫
高級階次設計及集成 發動機聲浪增强設計及車內快速體驗 電動車主動聲音設計全方位體驗及調試
48
© 2020 Ansys, Inc. / Confidential