Calculation Sheet For Tank - API 620 12th Ed [PDF]

  • 0 0 0
  • Gefällt Ihnen dieses papier und der download? Sie können Ihre eigene PDF-Datei in wenigen Minuten kostenlos online veröffentlichen! Anmelden
Datei wird geladen, bitte warten...
Zitiervorschau

1. Tank Design Data Description Desingn Code Content Content Specific Gravity Nominal Capacity Net Working Capacity Storage Capacity Type of Roof Tank Inside Diameter Tank Height Design liquid Level High Liquid Level Low Liquid Level Design Temperature Operating Temperature Minimum Design Temperature (MDMT) Design Pressure (Internal) Design Pressure (External) Operating Pressure Hydrostatic Test Level Pneumatic Test Pressure Joint Efficiency Insulation Max, Boil-off Rate

Design Wind Speed (3-sec.gust) Seismic Live Load (Roof) Snow Load (Roof) Material Shell Plate

Annular Plate Bottom Plate Type Plate Structure Wind Stiffener Compression Ring Corrosion Allowance Roof

Shell Plate

Annular Plate Bottom Plate

Suspended Deck Roof Plate Structure

Inner Tank Outer tank API 620, 12th ed. Add. 2 (2018), Appendix R AMONIA 0.677 31186 27826 28890 44000 20510 19000 19000 700 -42 -36.5 -40 0 0 0 16079 0

m³ 196154 m³ 175020 m³ 181713 Suspended Deck mm 144.357 mm 67.29 mm 62.336 mm 62.336 mm 2.297 °C -43.6 °C -33.7 °C -40 MPa 0 MPa 0 MPa 0 mm 52.752 Pa 0 1

Barrel Barrel Barrel ft ft ft ft ft F F F mbar.g mbar.g mbar.g ft mbar.g

45400 22240 17872

80 -36.5 -40 0.014 0.00098 0.0049 0.0175

Dome Roof mm 148.95 mm 72.966 mm 58.635

°C °C °C MPa MPa MPa mm MPa

176 -33.7 -40 140 9.8 49 175

ft ft ft

F F F mbar.g mbar.g mbar.g ft mbar.g

1 Yes (Cold) 0.05 wt% per day ASCE7-10, Occupancy Category=III, Wind Speed = 120 km/h (74.6 mi/h) ASCE7-10, Risk Category=III kpa 1 20.9 lb/ft129 1.716 kpa 35.8 lb/ft²

Inner Tank SA537-CL1+S5 SA537-CL1+S5 SA537-CL1+S5 Suspended Deck SA537-CL1+S5 A36 Inner Tank 1.5 1.5 1.5 1.5 0 0

mm mm mm mm mm mm

0.059 0.059 0.059 0.059 0 0

Outer tank SA537-CL1+S5 SA537-CL1+S5 SA537-CL1+S5 Dome Roof SA537-CL1+S5 A36 SA537-CL1+S5 SA537-CL1+S5 Outer tank in in in in in in

1.5 1.5 1.5 0 1.5 0.75

mm mm mm mm mm mm

0.059 0.059 0.059 0 0.059 0.03

in in in in in in

2. Tank Capacity

A. Design Specification (inner Tank) Tank Inside Diameter (Inner Tank) Height from Bottom to Top High Liquid Level Low Liquid Level High Liquid Level from Low Liquid Level

Di Ht H.L.L L.L.L Hnet

44000 20510 19000 700 18300

mm mm mm mm mm

144.357 67.29 62.336 2.297 60.039

ft ft ft ft ft

B. Nominal Capacity (inner Tank)

𝑉_𝑛𝑜=𝜋× 〖𝐷𝑖〗 ^2/4 ×Ht

Vno = 31186



196154

Barrel

𝑉_𝑛𝑒𝑡=𝜋× 〖𝐷𝑖〗 ^2/4 ×(H.L.L−L.L.L)

Vnet = 27826



175020

Barrel

Vst = 28890



181713

Barrel

mm mm mm mm mm

148.95 72.966 58.551 2.297 56.254

ft ft ft ft ft

𝑉_𝑠𝑡=𝜋× 〖𝐷𝑖〗 ^2/4 ×H.L.L C. Design Specification (outer Tank) Tank Inside Diameter (outer Tank) Height from Bottom to Top High Liquid Level Low Liquid Level High Liquid Level from Low Liquid Level

Di Ht H.L.L L.L.L Hnet

45400 22240 17846 700 17146

D. Nominal Capacity (outer Tank)

𝑉_𝑛𝑜=𝜋× 〖𝐷𝑖〗 ^2/4 ×Ht

Vno = 36003



226452

Barrel

𝑉_𝑛𝑒𝑡=𝜋× 〖𝐷𝑖〗 ^2/4 ×(H.L.L−L.L.L)

Vnet = 27757



174586

Barrel

Vst = 28890



181713

Barrel

𝑉_𝑠𝑡=𝜋× 〖𝐷𝑖〗 ^2/4 ×H.L.L

18.7 1618.831278 30272.14491 1520.530844 19.90893182

3. Inner Shell Plate Calculation 3.1 Shell Plate Calculation at Design Condition (D.C) Diameter of Tank Inside D = 44000 Height of Tank Ht = 20510 Design Liquid Level for Shell thk. Calc. D.L.L = 19000 High Liquid Level H.L.L = 19000 Corrosion Allowance C.A = 1.5 Design Specific Gravity G = 0.677 Tank Radius Rc=D/2 = 22000 Cross-Sectional Area of The Tank At = 1520.5 The Total Weight of The Portion of The Tank and Its Contents W = See Table 3.A Summation of The Vertical Components of The Forces F = Joint Efficiency of Shell Weld E = 1 Tensile Strength Fu = 482.6 Yeild Strength Fy = 344.7 Maximum Allowable Stress for Simple Tension of Design Liquid Sts_d = 144.8 Sts_d = Min(Fu*0.3, Fy*0.6) Design Internal Pressure Pg = 140 Liquid Head Pressure Pl = See Table 3.A Total Pressure P = Pg+Pl For Cylindrical Sidewalls of a Vertical Tank : As Per API 620 5.10.2.5 c. Eqn. (10)(11).

𝑇1=𝑅_𝑐/2×( 𝑃+ (𝑊+𝐹)/𝐴_𝑡 )

mm mm mm mm mm mm m²

MPa MPa

1732.3 807.5 62.34 62.34 0.059 42.82 866.142 2356827.5

in in ft ft in lb/ft³ in in²

0

lb

70000 50000 21000

psi psi psi

2.030934027 psi

T1 = Meridomal (longitudinal) Unite Force. (lb/in) T2 = Latitudinal (Circumferential) Unite Force. (lb/in)

𝑇2= 𝑅_𝑐×𝑃 Required Shell Thickness Calculation : As Per API 620 5.10.3.2 Eqn. (16)

𝑡𝑑= (𝑀𝑎𝑥(𝑇1,𝑇2))/(𝑆𝑡𝑠_𝑑×𝐸) +𝐶.𝐴

Shell Course No. 9 8 7 6 5 4 3 2 1 Shell Height

td = Design Thickness of Shell (mm) tu = Used (Selected) Thickness of Shell (mm)

Width of Used Plate

Design Liquid Level (D.L.L)

Pl

P=Pg+Pl

W= Contents Weight

T1

T2

mm 510 2500 2500 2500 2500 2500 2500 2500 2500 20510

mm 0 1500 4000 6500 9000 11500 14000 16500 19000 mm

psi 0.000 1.444 3.852 6.259 8.667 11.074 13.482 15.889 18.297

psi 0.000 1.444 3.852 6.259 8.667 11.074 13.482 15.889 18.297

lb 9760 3452001 9125594 14817128 20502683 26194217 31879771 37571306 43268822

lb/in 2 1260 3345 5433 7521 9609 11697 13785 15875

lb/in 0 1251 3336 5422 7507 9592 11677 13763 15848

td

in 0.059 0.119 0.218 0.318 0.417 0.517 0.616 0.715 0.815

mm 1.502 3.024 5.546 8.072 10.597 13.123 15.647 18.173 20.701

Used th'k (tu)

Weight

mm 8 8 8 11 13 16 18 21 25 Total

kg 4427 21702 21702 29840 35266 43404 48830 56968 67819 329959

3. Inner Shell Plate Calculation 3.1 Shell Plate Calculation at Hydrostatic Condition (H.C) Diameter of Tank Inside D = Height of Tank Ht = Design Liquid Level for Shell thk. Calc. D.L.L = High Liquid Level H.L.L = Corrosion Allowance C.A = Design Specific Gravity G = Tank Radius Rc=D/2 = Cross-Sectional Area of The Tank At = The Total Weight of The Portion of The Tank and Its Contents W = Summation of The Vertical Components of The Forces F = Joint Efficiency of Shell Weld E = Tensile Strength Fu = Yeild Strength Fy = Maximum Allowable Stress for Simple Tension of Design Liquid Sts_test = Sts_d = Min(Fu*0.55, Fy*0.85) Design Internal Pressure Pg = Liquid Head Pressure Pl = Total Pressure P = For Cylindrical Sidewalls of a Vertical Tank : As Per API 620 5.10.2.5 c. Eqn. (10)(11).

𝑇1=𝑅_𝑐/2×( 𝑃+ (𝑊+𝐹)/𝐴_𝑡 )

44000 20510 19000 19000 1.5 1.000 22000 1520.5 See Table 3.A 1 482.633 344.738 265.448

mm mm mm mm mm mm m²

MPa MPa

140 See Table 3.A Pg+Pl

1732.3 807.5 62.34 62.34 0.059 42.82 866.142 2356827.5

in in ft ft in lb/ft³ in in²

0

lb

70000 50000 38500

psi psi psi

2.030934027 psi

T1 = Meridomal (longitudinal) Unite Force. (lb/in) T2 = Latitudinal (Circumferential) Unite Force. (lb/in)

𝑇2= 𝑅_𝑐×𝑃 Required Shell Thickness Calculation : As Per API 620 5.10.3.2 Eqn. (16)

𝑡𝑑= (𝑀𝑎𝑥(𝑇1,𝑇2))/(𝑆𝑡𝑠_𝑑×𝐸) +𝐶.𝐴

Shell Course No. 9 8 7 6 5 4 3 2 1 Shell Height

td = Design Thickness of Shell (mm) tu = Used (Selected) Thickness of Shell (mm)

Width of Used Plate

Design Liquid Level (D.L.L)

Pl

P=Pg+Pl

W= Contents Weight

T1

T2

mm 510 2500 2500 2500 2500 2500 2500 2500 2500 20510

mm 0 1500 4000 6500 9000 11500 14000 16500 19000 mm

psi 0.000 2.134 5.690 9.246 12.802 16.358 19.914 23.470 27.027

psi 0.000 2.134 5.690 9.246 12.802 16.358 19.914 23.470 27.027

lb 9760 5076140 13456632 21855065 30247518 38645952 47038405 55436839 63841253

lb/in 2 1857 4937 8020 11102 14186 17268 20351 23435

lb/in 0 1848 4928 8008 11088 14168 17249 20329 23409

td

in 0.059 0.107 0.187 0.267 0.347 0.428 0.508 0.588 0.668

mm 1.501 2.725 4.757 6.791 8.825 10.859 12.892 14.926 16.961

Used th'k (tu)

Weight

mm 8 8 8 11 13 16 18 21 25 Total

kg 4427 21702 21702 29840 35266 43404 48830 56968 67819 329959

3.3) Summary of Shell Plate Thickness Shell Course No. 9 8 7 6 5 4 3 2 1 Shell Height

Width of Used Plate

Tottal Liquid Height

Tottal Hydro Test Height

mm 510 2500 2500 2500 2500 2500 2500 2500 2500 20510

mm 0 1500 4000 6500 9000 11500 14000 16500 19000 mm

mm 0 1500 4000 6500 9000 11500 14000 16500 19000

At Design (td) in 0.06 0.12 0.22 0.32 0.42 0.52 0.62 0.72 0.81

mm 1.50 3.02 5.55 8.07 10.60 13.12 15.65 18.17 20.70

At Hydro Test (tt) in 0.06 0.11 0.19 0.27 0.35 0.43 0.51 0.59 0.67

mm 1.50 2.72 4.76 6.79 8.82 10.86 12.89 14.93 16.96

Calc. Thickness Max (td,tt) in 0.06 0.12 0.22 0.32 0.42 0.52 0.62 0.72 0.81

mm 1.50 3.02 5.55 8.07 10.60 13.12 15.65 18.17 20.70

Used th'k (tu) mm 8 8 8 11 13 16 18 21 25 Total

Design or Test Condition Design Design Design Design Design Design Design Design Design 0

3. Shell Plate Calculation 3.3 Max. membrane stress check of shell plate for operating condition 1) Calculation Formula Maximum membrane stress for T2 (for vertical weld joint) : Sms1

𝑆𝑚𝑠1=𝑇2/((𝑡 𝑢𝑠𝑒𝑑−𝐶.𝐴)×𝐸)

Where : T2 C.A E t used

: : :

Latitudinal unit force in wall of tank at the level under consideration (lb/in) 0.0591 Corrosion allowance = 1.5 mm 1.00 Joint efficiency of shell weld =

:

Used shell plate thickness

in

2) Calculated result (Inner Shell at Design Condition) Shell course No.

Material

9

SA537-CL1+S5 SA537-CL1+S5

8 7 6 5 4 3 2 1

SA537-CL1+S5 SA537-CL1+S5 SA537-CL1+S5 SA537-CL1+S5 SA537-CL1+S5 SA537-CL1+S5 SA537-CL1+S5

Used Thk. (tu)

Vertical weld joint Sms1 Decision for Sms1

T2

in 0.31

mm 8

lb/in 0

psi 0.0

>

7000

0.31 0.31

8 8

1251 3336

4889.07 13037.52

> >

7000 7000

0.43 0.51

11 13

5422 7507

14495.66 16580.32

> >

7000 7000

0.63 0.71

16 18

9592 11677

16802.67 17975.97

> >

7000 7000

0.83 0.98

21 25

13763 15848

17926.59 17129.08

> >

7000 7000

RT is Needed or Not

psi Not Needed Not Needed Needed Needed Needed Needed Needed Needed Needed

Where, Decision value of Sms1 : 0.1 times of specified minimum tensile strength (By API 620 App.R.5.6.1 & R.5.6.2 & Figure R-2) SA537-CL1+S5

70000 *

0.1 =

7000 psi

3) Decision of Radiographic Examination (A) For vertical weld joint of 1st-9th course, Sms1 tensile stress is greater than specified minimum tensile of the plate material.

Therefore, shell plate to be examined by radigraphic examination according to API 620 Appendix R, Figure R-2 lower sketch.

4. Bottom plate and Annular plate of calculation 4.1) Bottom plate (API 620 Sec.5.9.4.2) 1) Material of Bottom Plate Bottom plate corrosion allowance Min. thickness: (API 620 Sec. 5.9.4.2 (1/4") 2) Required bottom plate thickness Used thickness of bottom plate

Material

=

SA537-CL1+S5

C.A tbm

= =

0.059 0.25

inch inch

1.5 6.35

mm mm

tbm+C.A tb_used

= =

0.309 0.315

inch inch

7.85 8

mm mm

Material

=

C.A Gp Gt D t td

= = = = = =

0.059 0.6770 1 144.4 0.984 0.815

inch

1.5

mm

ft inch inch

44 25 20.70

m mm mm

tt Hd

= =

0.668 62.3

inch ft

16.96 19

mm m

Sd

=

16092.833

psi

111

Mpa

tb_min tb

= =

0.309 0.394

inch inch

7.8486 10

mm mm

4.2) Annular plate (API 620 Table R-6) 1) Design condition Anuular plate material Annular plate corrosion allowance Design specific gravity of liquid content Gravity of hydrostatic test Diameter of tank inside Normal thickness for 1st shell course Design required thickness for 1st shell course Hydro-test required thickness for 1st shell course Design liquid level

SA537-CL1+S5

2) Maximum product stress

𝑆𝑑=(2.6∗𝐷∗𝐻𝑑∗𝐺𝑝)/(𝑡 ) 3) Annular plate thickness Minimum annular plate thickness (0.25 in)+C.A Used thickness of Annular plate

API 620 [TABLE R-6 Thickness Requirements for the Annular Bottom Plate] (tb : in) Design Stress in First Shell Course (lbf/in.²) Nomina; thickness of First Shell Course (in) ≤ 20,000 22,000 24,000 ≤ 0.75 1/4 1/4 1/4 > 0.75 to 1.00 > 1.00 to 1.25 > 1.25 to 1.5

4)

4-1)

1/4 1/4 1/4

1/4 1/4 9/32

Width of annular plate (API 620 R.3.5.1 and API 650 Appendix E.6.2.1.1.2) Used annular plate thickness tb = Design liquid level plus internal pressure head Design specific gravity of liquid

26,000 1/4 5/16 3/8 7/16

1/4 5/16 3/8

0.394

inch

10

mm

H=Hd G

= =

69.25 0.677

ft

21.11

m

w

=

22.4240407 inch

Min.annular plate width (w)

𝑤=(390∗𝑡𝑏)/ ( 〖 (𝐻∗𝐺) 〗 ^0.5 )

569.57063 mm

(width between the inside of the shell and any lap welded joint in the reminder of bottom) 4-2)

Min. required annular plate width due to seismic wSei = Min, radial width due to seismic (API 650 Appendix E.6.2.1.1.2-1a)

34.086338 inch

865.79298 mm

4-3) 4-4) 4-5)

Annular plate width : wDes = Max, (w,wSei) = Min. annular plate width Lmin = (Wo+t1+wDes+Ov) = Used annular plate width L=

34.09 39.99 29210

865.79298 mm 1016 mm 1150 mm

inch inch inch

5)

Dimensions for annular plate

Tank inside diameter Length of annular outer dia. To shell diameter 1st shell course thickness (Uncorroded) Annular plate inside diameter Annular plate outside diameter Overlap of annular plate and bottomplate Bottom plate weight Annular plate weight Total Bottom & Annular plate

Di Wo t1 Aid Aod Ov Wf1 Wf2 Wf=Wf1+Wf2

= = = = = = = = =

144.36 2.36 0.98 138.25 144.91 0.21

ft inch inch ft ft ft

44000 mm mm 60 25 mm 42138.414 mm 44170 mm mm 65 88121.4 kg 10810.6 kg 98932.0 kg

5. Inner tank shell stiffener calculation The maximum height of unstiffened side wall 5-1) 𝐿_𝑚𝑎𝑥=(𝐷∗√(𝑡/𝐷)) ∗ (0.45+(2.42∗𝐸∗(𝑡/𝐷)^2)/(𝐹∗𝑝∗(1−𝜈^2 )^0.75 ))

=

131

in

3318

mm

Where, p

=

External pressure or Insulation pressure from annular space (Min. value of STE's standard)

=

0.1421368

psi

0.00098

Mpa

D

=

1732.2835

in

44000

mm

= =

Inner tank diameter Safety factor

=

F E

= =

2 28862482

psi

t µ Hc

= = =

0.26 0.3 807.48

in

199000 6.5

Mpa mm

Poisson;s ratio Cylindrical inner shell height

= = =

in

20510

mm

Lact

=

Actual max stiffener spacing

=

125.98425

in

3200

mm

=

3

Modules of elasticity Thickness of the thinnest (top) shell course

𝑁_𝑠𝑡𝑖𝑓𝑓=(𝐻_𝑐−𝐿_𝑢)/𝐿_𝑚𝑎𝑥 −1

No of stiffeners Nstiff = is Lmax > Lact ? Yes,ok 5-2)

Check Shell Stability of unsupported Height Lu Check shell stability of unsupported height Lu between bottom of shell and lowest intermediate stiffener at shell ring #6, t = 9.5 mm

Shell Thick.

No

Width of Used Plate Corrosion Allowance

t_actual

Transposed Width for Each Course

Transposed Width for Each Course

6

tn(mm) 11

w(mm) 2500

C.A(mm) 1.5

tu(mm) 6.5

ta(mm) 9.5

Wtr for each (mm) 968

Wtr(mm) 968

5 4

13 16

2500 2500

1.5 1.5

6.5 6.5

11.5 14.5

600 336

1568 1904

3 2 1

18 21 25

2500 2500 2500

1.5 1.5 1.5

6.5 6.5 6.5

16.5 19.5 23.5

244 160 101

2148 2308 2409

Σ Shell Ht

15000

mm

𝑊_𝑡𝑟=𝑊∗ √((𝑡_𝑢𝑛𝑖/𝑡_𝑎𝑐𝑡𝑢𝑎𝑙 )^5 )

Where, Transposed Width = 5-3)

t_uniform

The Number of stiffeners requied to stabilise the shell is given by : (equ.18.11) p

=

External pressure or Insulation pressure from annular space (Min. value of STE's standard)

=

0.1421368

psi

0.00098

Mpa

D

=

1732.2835

in

44000

mm

= =

Inner tank diameter Safety factor

=

F E

= =

2 28862482

psi

t µ

= =

0.37 0.3

199000 9.5

Mpa mm

Poisson;s ratio

= =

Lu Lact

= =

Allowable unsupported shell height Actual unsupported shell height

= =

Modules of elasticity Thickness of the thinnest (top) shell course

𝐿_𝑚𝑎𝑥=(𝐷∗√(𝑡/𝐷)) ∗ (0.45+(2.42∗𝐸∗(𝑡/𝐷)^2)/(𝑓∗𝑝∗(1−𝜈^2 )^0.75 ))

Is " Lu > Σ Wu " fulfilled ?

Yes,ok

8239 8000

in

6 6-1)

Top Girder Calculation Required moment of inertia (equ.18.13)

𝐼𝑟𝑒𝑞𝑑=(𝐹∗𝑝∗𝐿𝑎∗𝐷^3)/(8∗𝐸∗(𝑁^2−1))

6-2)

=

1722.5847

in⁴

716993871

mm⁴

Calculation the number of buckling waves(min. N=2, Max.=10) (equ. 18.12)

𝑁^2=0.663/(𝐻/𝐷 (𝑇_𝑎𝑣/𝐷)^0.5 ) =

87.978786

Since tank is open Top, we use minimum number of buckling lobes (Nt=2), to keep tank shell circular even though shell and intermediate stiffeners a N = buckle into different number of ' N ' lobes. 2

Where,

6-3)

p

=

D H La F E Tav

= = = = = =

External pressure or insulation pressure from annular space (Min, value of STE's standard) Inner tank diameter inner tank height Inner stiffener height Factory of safety Modules of elasticity Average thickness of inner shell plate

La

=

=

9.2698522

in⁴

3858404

0.00098

Mpa

= = = = = =

1732.2835 807.48031 807.48031 2 28862482 0.4527559

in in in

44000 20510 20510

mm mm mm

psi in

199000 11.5

Mpa mm

=

125.98425 in

3200

mm

=

314.96063 in

8000

mm

mm⁴

Inner stiffener height

The Lowest Stiffeners Calculation Required moment of inertia (equ.18.13)

𝐼𝑟𝑒𝑞𝑑=(𝐹∗𝑝∗𝐿𝑎∗𝐷^3)/(8∗𝐸∗(𝑁^2−1))

La

6-5)

0.1421368 psi

Intermediate Stiffeners Calculation Required moment of inertia (equ.18.13)

𝐼𝑟𝑒𝑞𝑑=(𝐹∗𝑝∗𝐿𝑎∗𝐷^3)/(8∗𝐸∗(𝑁^2−1))

6-4)

=

=

=

23.174631

in⁴

9646009

Inner stiffener height

mm⁴

Shell to Bottom joint Stiffener

As = pHD/(4S) Ls = 0.6*√(Dt/2) t1 = first shell Thk A1 = Ls*t1 S = Allowable compressive stress H = tank height = annular plate outside L2 projection t2 = annular plate Thk = annular plate outside A2 projection area A1+A2= If A1+A2+A3˃ As A3 = La*t2

2146.581 445.0 25 11124.3 103

20510 60 10 600 11724.3 Yes Ok 8657.93

mm² mm mm mm² N/mm² mm mm

mm² mm²

"A1 + A2" are already greater than the required cross-sectional area, so no need of calculating A3

6-6)

Calculated moment of inertia and cross sectional area Top Stiffener

Thickness t mm

Length b mm

Area A b*t mm²

Gravity Distance from s-s cc mm

Moment of Inertia ea Item Ix t*h³/12

Gravity Distance to ea Item aa cg-cc mm

mm⁴

shell particip. = s-s 1.2*√(D/2 * t_cor) Horizontal Web 2 Vertical Flange 3

6.5

454

2951

0

10.5 10.5

600 350

6300

303.25

189000000

=∑Area

Tank Diameter Corrosion Allowance

D C.A

= center of gravity m mm

moment of inertia Ir1 required

Ir1 required

mm⁴

716993871

moment of inertia Ixx provided Is I xx provided > Ir1 req'd ?

I xx provided mm⁴

798864261 Yes OK

320.804 mm

mm⁴

10389.979167 320.804 303713164

608.5 33764.0625 320.804 189044154 =∑Ix = cg

CG

3675 12926

Combined Moment of Inertia Ixx Ix+A*aa²

44 1.5

17.554

190941300

287.696 304209797 798864261 =∑Ixx

6-7)

Calculated moment of inertia and cross sectional area for Intermediate Stiffeners Top Stiffener

Thickness t mm

Length b mm

Area A b*t mm²

Gravity Distance from s-s cc mm

Moment of Inertia ea Item Ix t*h³/12

Gravity Distance to ea Item aa cg-cc mm

mm⁴

shell particip. = s-s 1.2*√(D/2 * t_cor) Horizontal Web 2 Vertical Flange 3

6.5

454

2951

6.5 0

150 0

975

78.25

mm⁴

10389.979167 19.432947 1124803.9 1828125

58.817053 5201084.6

=∑Area

153.25 0 133.81705 0 19.432947 1838514.9792 6325888.5 =∑Ix =∑Ixx = cg

Tank Diameter Corrosion Allowance

D C.A

= center of gravity m mm

moment of inertia Ir1 required

Ir1 required

moment of inertia Ixx provided Is I xx provided > Ir1 req'd ?

CG

19.432947 mm

0 3926

0

Combined Moment of Inertia Ixx Ix+A*aa²

mm⁴ I xx provided mm⁴

44 1.5

3858404 6325889 Yes OK

6-8)

Calculated moment of inertia and cross sectional area for the lowest Stiffeners Top Stiffener

Thickness t mm

Length b mm

Area A b*t mm²

Gravity Distance from s-s cc mm

Moment of Inertia ea Item Ix t*h³/12

Gravity Distance to ea Item aa cg-cc mm

mm⁴

shell particip. = s-s 1.2*√(D/2 * t_cor) Horizontal Web 2 Vertical Flange 3

Combined Moment of Inertia Ixx Ix+A*aa²

mm⁴

6.5

454

2951

0

10389.979167 31.574924 2952465.6

6.5 0

200 0

1300

103.25

4333333.3333 71.675076 11011845

=∑Area

203.25 0 171.67508 0 31.574923547 4343723.3125 13964310 =∑Ix =∑Ixx = cg

Tank Diameter Corrosion Allowance

D C.A

= center of gravity m mm

moment of inertia Ir1 required

Ir1 requiredcm⁴ I xx provid cm⁴

moment of inertia Ixx provided Is I xx provided > Ir1 req'd ?

CG

31.5749235 mm

0 4251

44 1.5

9646009 13964310 Yes OK

Tank stability check due to seismic : API 620 APPENDIX. L [CLE] DESIGN CONDITION & DIMENSION Design Code " API 620 Appendix. L (CLE) and API 650 Appendix E and ASCE 7-10

Tank diameter Tank height 1st shell course thickness Min. yeild strength of 1st shell and annular plate Product design stress Tank elastic modulus shell weight (Excluding anchor strap weight) Roof weight Bottom weight Specific gravity of content Density of fluid Design liquid level (H = D.L.L) Contents weight Corrosion allowance Design internal pressure Importance factor classification Importance factor (by API 620 L.4.4.2.3) Soil site class

D Ht t Fty Sd E Ws Wr Wf G ρ H Wp C.A Pi

= = = = = = = = = =

44000 20510 25 344.7 144.8 199000 329.959 N/A 98.932 0.677

mm mm mm Mpa Mpa Mpa Ton Ton Ton

= = = = =

677 19000 19558.5 1.5 0

kg/m³ mm Ton mm mbar

= =

1 C

144.4 67.3 0.98 50000.0 21000.0 29000.0 N/A

ft ft in ksi ksi ksi kips kips kips pcf ft kips in mmAg

Spectral response acceleration parameter for Short and 1-Second Periods: Spectral acceleration param. (0.2 sec period) Spectral acceleration param. (1 sec period) Regional-dependent transition long-period Seismic peak ground acceleration

Ss S1 TL Sp

= = = =

1.24 0.52 4 0.496

g g sec

Fa Fv

= =

1 1.3

g g

SMS SM1

= =

1.24 0.676

Sp = SS /2.5, Sp = S1/1.25

Site coefficient for Short and 1-Second Periods: Acceleration-based site coefficient Velocity-based site coefficient

MCE Spectral Response Accelerations for Short and 1-Second Periods: MCE spectral response acceleration param MCE spectral response acceleration param MCE: Maximum Considered Earthquake

SMs = Fa Ss ASCE 7-10 SM1 = Fv S1 ASCE 7-10

Design Spectral Response Accelerations for Short and 1-Second Periods: (5% damped) Scaling factor (by API 620 App. L.4.4.2 1) Design spectral response acceleration param. Design spectral response acceleration param. T0 = 0.2 * SD1/ SDS Ts = SD1/SDS Regional-dependent transition long-period

Q SDS SD1 T0 Ts TL

= = = = = =

1 1.24 0.676 0.109 0.545 4

= = = = =

6.47 0.60 0.34 7.128 0.545

g g sec sec sec

SDS = Q * SMs SD1 = Q * SM1 ASCE 7-10 ASCE 7-10 API 650 Appendix E.4.6.1

Structural Period of Vibration (including sloshing): (using API 650 Appendix E) Coefficient of impulsive natural period Coefficient of sloshing period Impulsive natural period Convective (Sloshing) period Short period (Design) Where, Ti(sec) = Max{ (1/2000^0.5) * (Ci * H/(t/D)^0.5) * (p/E)^0.5, 0.128 } Tc(sec) = 1.8 * Ks * SQRT(D) Ts(sec) = SD1/ SDS

Ci Ks Ti Tc Ts

Ci = from API 650 Appendix E, Fig. E-1 Ks =0.578 / SQRT (TANH (3 .68 * H/D)) sec sec sec API 650 Appendix E.4.5.1-1a API 650 Appendix E4.5.2-a ASCE 7-10

Design Spectral Response Accelerations of Tank (Impulsive method) Force reduction factor (impulsive mode) Force reduction factor (convective mode) Coefficient to adjust the spectral acceleration. Impulsive spectral acceleration parameter. Convective spectral acceleration parameter. Vertical earthquake acceleration parameter. Where, Impulsive spectral acceleration parameter Ai : Ai = SDS (I/Rwi) convective spectral acceleration parameter Ac : when Tc TL

Ac = KSD1 (TL/Tc²)(I/Rwc)

Rwi Rwc K Ai Ac Av

= = = = = =

2.5 1.5 1.5 0.496 0.053 0.583

API 620 Appendix . L.4.2

Av = 0.47 * SDs

Seismic base shear force and siling resistance Total Base Shear Force at design(SRSS) Sliding Resistance

Therefore,

V Vs

= =

4904.412 ton 48097.56 kN 11539.74 ton 113170.2 kN

The tank is no Sliding, Self-Anchored (V 1.33 sec (Ts=SD1/SDS, ASCE 7-10 seismic design criteria) (API 650 E, Fig. E-1) H/D = 0.487 sec Ti = 1/(2000^0.5)*Ci*H*SGRT(p/E)/SQRT(t/D) sec Tc = 1.8*Ks*SQRT(D) ton 92239.76 KN (Wi=Tanh(0.966*D/H)/(0.866*D/H)*Wp) ton 93924.16 KN (Wc=(0.23*D/H*Tanh(3.67*H/D))*Wp) ton Vi = Ai*(Wr+Ws+Wf+Wi) ton Vc=Ac*Wc ton V=SQRT(Vi²+Vc²) kN

mm

Wi =

11.090 m

mm

=

mm

Xc

93924.16 kN

20510

Wc =

19000

=

1478

mm

92239.76 kN

Base Shear Force V = 48097.56 kN Xi

=

7.125

Mrw Ringwall Moment =

m

343256

Seismic Moment and Force Diagram 5) Overturning moment (Note: Mrw is the ringwall overturning moment at top of foundation.) Center of action for ring wall overturning moment Height of tank shell̍s center of gravity (included top girder) Height of roof appurtenances center of gravity Height of impulsive mode (for RINGWALL moment) Height of convective mode (for RINGWALL moment) Height of impulsive mode (for SLAB moment) Height of convective mode (for SLAB moment)

CASE : Xs Xr Xi Xc Xis Xcs

D/H = = = = = =

= 7960 N/A 7125 11090.09 17354.40 15897.85

2.15

> mm mm mm mm mm mm

1.333 7.96 N/A 7.125 11.090 17.354 15.898

m m m m m m

kN-m

Overtuning RINGWALL moment

Mrw

=

35001149.251

kg.m

343256

kN-m

Overturning SLAB moment

Ms

=

82661294.596

kg.m

810659

kN-m

Where

= SQRT[(Ai * (Wi * Xi + Ws * Xs + Wr * Xr))² + ( Ac *Wc * Xc)²]

Mrw

= SQRT[(Ai * (Wi * Xis + Ws * Xs + Wr * Xr))² + ( Ac * Wc * Xcs)²]

Ms Xi Xc Xis Xcs

= = = =

0.375*H (1-(cosh(3.67*H/D)-1)/(3.67*H/D*sinh(3.67*H/D)))*H 0.375*(1+1.333*((0.866*D/H)/(tanh(0.866*D/H))-1))*H (1-(cosh(3.67*H/D)-1.937)/(3.67*H/D*sinh(3.67*H/D)))*H Without Av effect i

6.Anchorage Ratio

𝐉= 𝐌𝐫𝐰/(𝐃^𝟐×[𝐰𝐭(𝟏−𝟎.𝟒𝐀𝐯) +𝐰𝐚−𝟎.𝟒𝐰𝐢𝐧𝐭] )

=

2.6453347856

2.4461637146

API650 Appendix E (Table E-6) Anchorage Ratio Criteria

J ≤ 0.785

No calculated uplift under the design seismic overturning moment. The tank is self-anchored.

0.785 < J ≤ 1.54

Tank is uplifting, but the tank is stable for the design load providing the shell compression.requirements are satisfied. Tank is seif-anchored.

J > 1.54

Tank is not stable and cannot be self-anchored for the design load.modify the annular ring if L < 0.035D is not controlling or add mechanical anchorage.

Where, Vertical earthquake acceleration parametr Effective specific gravity Shell and roof weight acting at base of shell Roof load acting on the shell, including10% of the specified snow load

Av Ge Wt wrs

= = = =

0.5828 0.51918 2387.03 0

kg/m kg/m

wa

=

5003.77

kg/m

= =

5003.77 8900.17

kg/m kg/m

WaMax = 5742 * H *Ge * Ls

=

8894.42

kg/m

Ls =

=

1540

mm

Force resisting uplift in annular region 99*ta*SQRT(Fy*H*Ge) ≤ 201.1*H*D*Ge 99*ta*SQRT(Fy*H*Ge) 201.1*H*D*Ge Wa = Min(3411.3 , 9447.3)

0.035*D

Av = 0.47*SDS Ge = G*(1-0.4Av) Wt = Ws / πD + wrs wrs = Wr / πD

=

23409.6 N/m

49072.0 N/m (API 650 E6.2.1. 1-1a)

(API 650 E6.2.1. 1-2a)

Calculated design uplift load due to product pressure per unit circumferential length Wint = πD² / 4 * Pi / πD = ( D / 4 )* Pi Internal Design pressure

Wint = = Pi

0 0

Mechanical Anchorage required check by Seismic :

kg/m kg/m²

yes

0

kPa

0

mbar

API 650 Appendix E.6.2.1.1.1.

7)Annular Ring Requirement Min, radial width (API 650 Appendix E6.2.1.1.2-1a)

=

865.793

mm

The maximum width of annulus for determining the resisting force, 0.035 D Annular plate limit width L Max = = Annular plate thickness

1540 10

mm mm

Fy =

344.7

Mpa

L

=

L

34.0863 in

0.01723*ta*SQRT(Fy/(H*Ge))

Min. specified yield strength of annular plate 8)Uplift force calculation due to seismis loading.

(Per API 650 E6.2.1.1.2-1a)

:(Only mechanically anchored Tanks)

21184.14 WAB = (1.273Mrw / D² )- wt(1-0.4Av) WAB = WAB = Calculated design uplift load on anchors per unit circumferential length. 0 Wint : calculated design uplift load wint = due to design internal pressure per unit circumferential length. Load per anchorage Anchor quantity

(SA537-CL 1 API 620 Table 5-1)

Tse = π D *WAB / N

Tse

= =

9)Shell-Membrane Compression stress Compression in Mechanically anchored Tanks Maximum longitudinal shell compression stress. (σc) Un-anchored tanks When J ≤ 0.785 Un-anchored tanks When 0.785< J ≤1.54 Mechanically anchored When J >1.54

34.05 86

kg/m

207.75

kN/m

kg/m

0

kN/m

Ton

333.9

(API 650 Appendix E.6.2.2) When J(2.342)>1.54 = 1.1046 kg/mm² 10.8329 σc = -0.48361 kg/mm² -4.74281 σc = 1.1046 kg/mm² 10.8329 σc

Allowable longitudinal shell-membrane compression stress When GHD²/ts² ≥ 44 Fc = 83ts / D

kN

Mpa Mpa Mpa

API 650 Appendix E.6.2.2.3

GHD²/ts² = = Fc

45.09 ≥ 44 m³/mm² 44.3295 Mpa 4.52 kg/mm²

Therefore, Maximum stress σc (kg/mm²) 1.10


1.54 = 1.1046 kg/mm² 10.8329 Mpa

10) Sloshing height calculation Sloshing wave height above the product design height When, SUG = III Then Freeboard height hs : Addition shell height required above the sloshing wave height.(by MOM) Af : Acceleration coefficient for sloshing wave height calculation. Where, Seismic use group

δs

(API 650 Appendix E.7.2.1) = 0.42 * D * Af + hs =

hs Af

= =

0 0.080 III 1 1.5 0.676 7.128 4

= = SD1 = = Tc TL =

Importance factor (by API 620.L.4.4.23))

I

Coefficient to adjust the spectral acceleration. Design spectral response acceleration param.

K

Convective (Sloshing) period (API 650 App.E.4.5.2) Regional-dependent transition long-period

1478

mm

δs = 1478 mm g Af = KSD1I (TL/Tc²)

mm

sec sec

11) Dynamic Hoop Stress Calculation (API 650 Appendix E 6.1.4)

When, D/H No. 9 8 7 6 5 4 3 2 1

t mm 8 8 8 11 13 16 18 21 25

=

>

Y Nh m (N/mm) 0.000 -43.79 1.500 175.2 4.000 540.1 6.500 905.0 9.000 1269.9 11.500 1634.8 14.000 1999.7 16.500 2364.6 19.000 2729.5

1.333 Y = 10800 mm = 24750 mm 6702 mm = N/A mm = = 17884.98 mm N/A mm =

1.333 10.8 24.75 6.702 N/A 17.885 N/A

m m m m m m

kN-m

Overtuning RINGWALL moment

Mrw

=

43427271

kg.m

425891

kN-m

Overturning SLAB moment

Ms

=

103574846.69

kg.m

1015759

kN-m

Where

= SQRT[(Ai * (Wi * Xi + Ws * Xs + Wr * Xr))² + ( Ac *Wc * Xc)²]

Mrw Ms

= SQRT[(Ai * (Wi * Xis + Ws * Xs + Wr * Xr))² + ( Ac * Wc * Xcs)²]

Xi Xc Xis Xcs

= = = =

0.375*H (1-(cosh(3.67*H/D)-1)/(3.67*H/D*sinh(3.67*H/D)))*H 0.375*(1+1.333*((0.866*D/H)/(tanh(0.866*D/H))-1))*H (1-(cosh(3.67*H/D)-1.937)/(3.67*H/D*sinh(3.67*H/D)))*H Without Av effect i

6.Anchorage Ratio

𝐉= 𝐌𝐫𝐰/(𝐃^𝟐×[𝐰𝐭(𝟏−𝟎.𝟒𝐀𝐯) +𝐰𝐚−𝟎.𝟒𝐰𝐢𝐧𝐭] )

=

10.120942348

2.1375200765

API650 Appendix E (Table E-6) Anchorage Ratio Criteria

J ≤ 0.785

No calculated uplift under the design seismic overturning moment. The tank is self-anchored.

0.785 < J ≤ 1.54

Tank is uplifting, but the tank is stable for the design load providing the shell compression.requirements are satisfied. Tank is seif-anchored.

J > 1.54

Tank is not stable and cannot be self-anchored for the design load.modify the annular ring if L < 0.035D is not controlling or add mechanical anchorage.

Where, Vertical earthquake acceleration parametr Effective specific gravity Shell and roof weight acting at base of shell Roof load acting on the shell, including10% of the specified snow load

Av Ge Wt wrs

= = = =

0.5828 0.51918 5003.9 2109.02

kg/m kg/m

wa

=

4852.97

kg/m

= =

4852.97 8638.15

kg/m kg/m

WaMax = 5742 * H *Ge * Ls

=

8632.57

kg/m

Ls =

=

1589

mm

Force resisting uplift in annular region 99*ta*SQRT(Fy*H*Ge) ≤ 201.1*H*D*Ge 99*ta*SQRT(Fy*H*Ge) 201.1*H*D*Ge Wa = Min(3411.3 , 9447.3)

0.035*D

Av = 0.47*SDS Ge = G*(1-0.4Av) Wt = Ws / πD + wrs wrs = Wr / πD

=

49073.6 N/m

47593.0 N/m (API 650 E6.2.1. 1-1a)

(API 650 E6.2.1. 1-2a)

Calculated design uplift load due to product pressure per unit circumferential length Wint = πD² / 4 * Pi / πD = ( D / 4 )* Pi Internal Design pressure

Wint = = Pi

16202.7 1427.55

Mechanical Anchorage required check by Seismic :

yes

kg/m kg/m²

14

kPa

140

mbar

API 650 Appendix E.6.2.1.1.1.

7)Annular Ring Requirement Min, radial width (API 650 Appendix E6.2.1.1.2-1a)

=

892.697

mm

The maximum width of annulus for determining the resisting force, 0.035 D Annular plate limit width L Max = = Annular plate thickness

1589 10

mm mm

Fy =

344.7

Mpa

L

=

L

35.1456 in

0.01723*ta*SQRT(Fy/(H*Ge))

Min. specified yield strength of annular plate 8)Uplift force calculation due to seismis loading.

(Per API 650 E6.2.1.1.2-1a)

:(Only mechanically anchored Tanks)

22983.84 WAB = (1.273Mrw / D² )- wt(1-0.4Av) WAB = WAB = Calculated design uplift load on anchors per unit circumferential length. Wint : calculated design uplift load wint = 16202.71235 due to design internal pressure per unit circumferential length. Load per anchorage Anchor quantity

(SA537-CL 1 API 620 Table 5-1)

Tse = π D *WAB / N

Tse

= =

9)Shell-Membrane Compression stress Compression in Mechanically anchored Tanks Maximum longitudinal shell compression stress. (σc) Un-anchored tanks When J ≤ 0.785 Un-anchored tanks When 0.785< J ≤1.54 Mechanically anchored When J >1.54

34.15 96

kg/m

225.40

kN/m

kg/m

158.9

kN/m

Ton

334.9

kN

(API 650 Appendix E.6.2.2) When J(25.36)>1.54 = 1.4039 kg/mm² 13.7681 σc = -0.02534 kg/mm² -0.24847 σc = 1.4039 kg/mm² 13.7681 σc

Allowable longitudinal shell-membrane compression stress When GHD²/ts² ≥ 44 Fc = 83ts / D

Mpa Mpa Mpa

API 650 Appendix E.6.2.2.3

GHD²/ts² = = Fc

45.16 ≥ 44 m³/mm² 42.9626 Mpa 4.38 kg/mm²

Therefore, Maximum stress σc (kg/mm²) 1.40


1.54 = 1.4039 kg/mm² 13.7681 Mpa

11) Dynamic Hoop Stress Calculation (API 650 Appendix E 6.1.4)

When, D/H No. 10 9 8 7 6 5 4 3 2 1

t mm 36 12 12 12 13 14 16 18 21 25

=

>

Y Nh m (N/mm) 0.000 0 0.000 0 0.372 11 2.872 387 5.372 764 7.872 1140 10.372 1517 12.872 1893 15.372 2270 17.872 2646

1.333 Y