Arfken Solution [PDF]

  • 0 0 0
  • Gefällt Ihnen dieses papier und der download? Sie können Ihre eigene PDF-Datei in wenigen Minuten kostenlos online veröffentlichen! Anmelden
Datei wird geladen, bitte warten...
Zitiervorschau

Página principal Buscar Buscar You

 slideshare Subir  Iniciar sesión Registrarse Buscar

Página principal Liderazgo Tecnología Educación Comercialización Diseño Más temas Buscar

 

Próxima SlideShare Cargando en...5 ×   Pornográfico Difamatorio Ilegal/Ilícito No deseado Other Violations

Thanks for flagging this SlideShare! Oops! An error has occurred.  1 of 524   

Copy of arfken solution 4,320 views

Nadeem Ashraf (33 SlideShares) , Working at As a lecturer Follow 0 6 1 0 Published on 22 de agosto de 2014

Copy of arfken solution Copy of arfken solution Published in: Ciencia 1 Comment 9 Me gusta Estadísticas Notas

Full Name Comment goes here. Hace 12 horas    Delete Reply Spam Block ¿Está seguro? Sí No Tu mensaje aparecerá aquí

Comparta sus opiniones... Publicar

carecacabeludo Thanks a lot for sharing. Hace 2 semanas    Responder  ¿Está seguro?  Sí  No Tu mensaje aparecerá aquí

Howard Yanxon , Boss at I AM my OWN Boss! 3 days ago

vahlok 4 days ago

Soumobrata1 1 week ago

rizuop 2 weeks ago

nefki123 1 month ago Show More Sin descargas reproducciones reproducciones totales 4,320 En SlideShare 0 De insertados 0 Número de insertados 0 Acciones Compartido 7 Descargas 353 Comentarios 1 Me gusta 9 Insertados 0 No embeds Denunciar contenido Marcar como inapropiada Reclamación de derecho de copia No notes for slide

Transcript 1. Instructor’s Manual MATHEMATICAL METHODS FOR PHYSICISTS A Comprehensive Guide SEVENTH EDITION George B. Arfken Miami University Oxford, OH Hans J. Weber University of Virginia Charlottesville, VA Frank E. Harris University of Utah, Salt Lake City, UT; University of Florida, Gainesville, FL AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier 2. Academic Press is an imprint of Elsevier 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK c 2013 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission and further information about the Publishers permissions policies and our arrangements with organi­ zations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research meth­ ods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, con­ tributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. For information on all Academic Press publications, visit our website: www.books.elsevier.com 3. Contents 1 Introduction 1 2 Errata and Revision Status 3 3 Exercise Solutions 7 1. Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . 7 2. Determinants and Matrices . . . . . . . . . . . . . . . . . . . . 27 3. Vector Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4. Tensors and Differential Forms . . . . . . . . . . . . . . . . . . 58 5. Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6. Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . 81 7. Ordinary Differential Equations . . . . . . . . . . . . . . . . . 90 8. Sturm­Liouville Theory . . . . . . . . . . . . . . . . . . . . . . 106 9. Partial Differential Equations . . . . . . . . . . . . . . . . . . 111 10. Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . 118 11. Complex Variable Theory . . . . . . . . . . . . . . . . . . . . 122 12. Further Topics in Analysis . . . . . . . . . . . . . . . . . . . . 155 13. Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . 166 14. Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15. Legendre Functions . . . . . . . . . . . . . . . . . . . . . . . . 231 16. Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . 256 17. Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 18. More Special Functions . . . . . . . . . . . . . . . . . . . . . . 286 19. Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 20. Integral Transforms . . . . . . . . . . . . . . . . . . . . . . . . 332 21. Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . 364 22. Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . 373 23. Probability and Statistics . . . . . . . . . . . . . . . . . . . . . 387 4 Correlation, Exercise Placement 398 5 Unused Sixth Edition Exercises 425 iv 4. Chapter 1 Introduction The seventh edition of Mathematical Methods for Physicists is a substantial and detailed revision of its predecessor. The changes extend not only to the topics and their presentation, but also to the exercises that are an important part of the student experience. The new edition contains 271 exercises that were not in previous editions, and there has been a wide­spread reorganization of the previously existing exercises to optimize their placement relative to the material in the text. Since many instructors who have used previous editions of this text have favorite problems they wish to continue to use, we are providing detailed tables showing where the old problems can be found in the new edition, and conversely, where the problems in the new edition came from. We have included the full text of every problem from the sixth edition that was not used in the new seventh edition. Many of these unused exercises are excellent but had to be left out to keep the book within its size limit. Some may be useful as test questions or additional study material. Complete methods of solution have been provided for all the problems that are new to this seventh edition. This feature is useful to teachers who want to determine, at a glance, features of the various exercises that may not be com­ pletely apparent from the problem statement. While many of the problems from the earlier editions had full solutions, some did not, and we were unfortunately not able to undertake the gargantuan task of generating full solutions to nearly 1400 problems. Not part of this Instructor’s Manual but available from Elsevier’s on­line web site are three chapters that were not included in the printed text but which may be important to some instructors. These include • A new chapter (designated 31) on Periodic Systems, dealing with mathe­ matical topics associated with lattice summations and band theory, • A chapter (32) on Mathieu functions, built using material from two chap­ ters in the sixth edition, but expanded into a single coherent presentation, and 1 5. CHAPTER 1. INTRODUCTION 2 • A chapter (33) on Chaos, modeled after Chapter 18 of the sixth edition but carefully edited. In addition, also on­line but external to this Manual, is a chapter (designated 1) on Infinite Series that was built by collection of suitable topics from various places in the seventh edition text. This alternate Chapter 1 contains no material not already in the seventh edition but its subject matter has been packaged into a separate unit to meet the demands of instructors who wish to begin their course with a detailed study of Infinite Series in place of the new Mathematical Preliminaries chapter. Because this Instructor’s Manual exists only on­line, there is an opportunity for its continuing updating and improvement, and for communication, through it, of errors in the text that will surely come to light as the book is used. The authors invite users of the text to call attention to errors or ambiguities, and it is intended that corrections be listed in the chapter of this Manual entitled Errata and Revision Status. Errata and comments may be directed to the au­ thors at harris at qtp.ufl.edu or to the publisher. If users choose to forward additional materials that are of general use to instructors who are teaching from the text, they will be considered for inclusion when this Manual is updated. Preparation of this Instructor’s Manual has been greatly facilitated by the efforts of personnel at Elsevier. We particularly want to acknowledge the assis­ tance of our Editorial Project Manager, Kathryn Morrissey, whose attention to this project has been extremely valuable and is much appreciated. It is our hope that this Instructor’s Manual will have value to those who teach from Mathematical Methods for Physicists and thereby to their students. 6. Chapter 2 Errata and Revision Status Last changed: 06 April 2012 Errata and Comments re Seventh Edition text Page 522 Exercise 11.7.12(a) This is not a principal­value integral. Page 535 Figure 11.26 The two arrowheads in the lower part of the circular arc should be reversed in direction. Page 539 Exercise 11.8.9 The answer is incorrect; it should be π/2. Page 585 Exercise 12.6.7 Change the integral for which a series is sought to ∞ 0 e−xv 1 + v2 dv. The answer is then correct. Page 610 Exercise 13.1.23 Replace (−t)ν by e−πiν tν . Page 615 Exercise 13.2.6 In the Hint, change Eq. (13.35) to Eq. (13.44). Page 618 Eq. (13.51) Change l.h.s. to B(p + 1, q + 1). Page 624 After Eq. (13.58) C1 can be determined by requiring consistency with the recurrence formula zΓ(z) = Γ(z + 1). Consistency with the duplication formula then determines C2. Page 625 Exercise 13.4.3 Replace “(see Fig. 3.4)” by “and that of the recurrence formula”. Page 660 Exercise 14.1.25 Note that α2 = ω2 /c2 , where ω is the angular frequency, and that the height of the cavity is l. 3 7. CHAPTER 2. ERRATA AND REVISION STATUS 4 Page 665 Exercise 14.2.4 Change Eq. (11.49) to Eq. (14.44). Page 686 Exercise 14.5.5 In part (b), change l to h in the formulas for amn and bmn (denominator and integration limit). Page 687 Exercise 14.5.14 The index n is assumed to be an integer. Page 695 Exercise 14.6.3 The index n is assumed to be an integer. Page 696 Exercise 14.6.7(b) Change N to Y (two occurrences). Page 709 Exercise 14.7.3 In the summation preceded by the cosine function, change (2z)2s to (2z)2s+1 . Page 710 Exercise 14.7.7 Replace nn(x) by yn(x). Page 723 Exercise 15.1.12 The last formula of the answer should read P2s(0)/(2s + 2) = (−1)s (2s − 1)!!/(2s + 2)!!. Page 754 Exercise 15.4.10 Insert minus sign before P1 n(cos θ). Page 877 Exercise 18.1.6 In both (a) and (b), change 2π to √ 2π. Page 888 Exercise 18.2.7 Change the second of the four members of the first display equation to x + ip √ 2 ψn(x), and change the corresponding member of the second display equation to x − ip √ 2 ψn(x). Page 888 Exercise 18.2.8 Change x + ip to x − ip. Page 909 Exercise 18.4.14 All instances of x should be primed. Page 910 Exercise 18.4.24 The text does not state that the T0 term (if present) has an additional factor 1/2. Page 911 Exercise 18.4.26(b) The ratio approaches (πs)−1/2 , not (πs) −1 . Page 915 Exercise 18.5.5 The hypergeometric function should read 2F1 ν 2 + 1 2 , ν 2 + 1; ν + 3 2 ; z−2 . Page 916 Exercise 18.5.10 Change (n − 1 2 )! to Γ(n + 1 2 ). Page 916 Exercise 18.5.12 Here n must be an integer. Page 917 Eq. (18.142) In the last term change Γ(−c) to Γ(2 − c). Page 921 Exercise 18.6.9 Change b to c (two occurrences). Page 931 Exercise 18.8.3 The arguments of K and E are m. Page 932 Exercise 18.8.6 All

arguments of K and E are k2 ; In the integrand of the hint, change k to k2 . 8. CHAPTER 2. ERRATA AND REVISION STATUS 5 Page 978 Exercise 20.2.9 The formula as given assumes that Γ > 0. Page 978 Exercise 20.2.10(a) This exercise would have been easier if the book had mentioned the integral representation J0(x) = 2 π 1 0 cos xt √ 1 − t2 dt. Page 978 Exercise 20.2.10(b) Change the argument of the square root to x2 − a2 . Page 978 Exercise 20.2.11 The l.h.s. quantities are the transforms of their r.h.s. counterparts, but the r.h.s. quantities are (−1)n times the transforms of the l.h.s. expressions. Page 978 Exercise 20.2.12 The properly scaled transform of f(µ) is (2/π)1/2 in jn(ω), where ω is the transform variable. The text assumes it to be kr. Page 980 Exercise 20.2.16 Change d3 x to d3 r and remove the limits from the first integral (it is assumed to be over all space). Page 980 Eq. (20.54) Replace dk by d3 k (occurs three times) Page 997 Exercise 20.4.10 This exercise assumes that the units and scaling of the momentum wave function correspond to the formula ϕ(p) = 1 (2π )3/2 ψ(r) e−ir·p/ d3 r . Page 1007 Exercise 20.6.1 The second and third orthogonality equa­ tions are incorrect. The right­hand side of the second equation should read: N, p = q = (0 or N/2); N/2, (p + q = N) or p = q but not both; 0, otherwise. The right­hand side of the third equation should read: N/2, p = q and p + q = (0 or N); −N/2, p = q and p + q = N; 0, otherwise. Page 1007 Exercise 20.6.2 The exponentials should be e2πipk/N and e−2πipk/N . Page 1014 Exercise 20.7.2 This exercise is ill­defined. Disregard it. Page 1015 Exercise 20.7.6 Replace (ν − 1)! by Γ(ν) (two occurrences). Page 1015 Exercise 20.7.8 Change M(a, c; x) to M(a, c, x) (two 9. CHAPTER 2. ERRATA AND REVISION STATUS 6 occurrences). Page 1028 Table 20.2 Most of the references to equation numbers did not get updated from the 6th edition. The column of references should, in its entirety, read: (20.126), (20.147), (20.148), Exercise 20.9.1, (20.156), (20.157), (20.166), (20.174), (20.184), (20.186), (20.203). Page 1034 Exercise 20.8.34 Note that u(t − k) is the unit step function. Page 1159 Exercise 23.5.5 This problem should have identified m as the mean value and M as the “random variable” describing individual student scores. Corrections and Additions to Exercise Solutions None as of now. 10. Chapter 3 Exercise Solutions 1. Mathematical Preliminaries 1.1 Infinite Series 1.1.1. (a) If un  1. (b) If un > A/n, n un diverges because the harmonic series diverges. 1.1.2. This is valid because a multiplicative constant does not affect the conver­ gence or divergence of a series. 1.1.3. (a) The Raabe test P can be written 1 + (n + 1) ln(1 + n−1 ) ln n . This expression approaches 1 in the limit of large n. But, applying the Cauchy integral test, dx x ln x = ln ln x, indicating divergence. (b) Here the Raabe test P can be written 1 + n + 1 ln n ln 1 + 1 n + ln2 (1 + n−1 ) ln2 n , which also approaches 1 as a large­n limit. But the Cauchy integral test yields dx x ln2 x = − 1 ln x , indicating convergence. 1.1.4. Convergent for a1 − b1 > 1. Divergent for a1 − b1 ≤ 1. 1.1.5. (a) Divergent, comparison with harmonic series. 7 11. CHAPTER 3. EXERCISE SOLUTIONS 8 (b) Divergent, by Cauchy ratio test. (c) Convergent, comparison with ζ(2). (d) Divergent, comparison with (n + 1)−1 . (e) Divergent, comparison with 1 2 (n+1) −1 or by Maclaurin integral test. 1.1.6. (a) Convergent, comparison with ζ(2). (b) Divergent, by Maclaurin integral test. (c) Convergent, by Cauchy ratio test. (d) Divergent, by ln 1 + 1 n ∼ 1 n . (e) Divergent, majorant is 1/(n ln n). 1.1.7. The solution is given in the text. 1.1.8. The solution is given in the text. 1.1.10. In the limit of large n, un+1/un = 1 + 1 n + O(n−2 ). Applying Gauss’ test, this indicates divergence. 1.1.11. Let sn be the absolute value of the nth term of the series. (a) Because ln n increases less rapidly than n, sn+1  1 2n + 3 + 1 2n + 4 , this series converges. With all signs positive, this series is the harmonic series, so it is not aboslutely convergent. (c) Combining adjacent terms of the same sign, the terms of the new series satisfy 2 1 2 > 1 2 + 1 3 > 2 1 3 , 3 1 4 > 1 4 + 1 5 + 1 6 > 3 1 6 , etc. The general form of these relations is 2n n2 − n + 2 > sn > 2 n + 1 . 12. CHAPTER 3. EXERCISE SOLUTIONS 9 An upper limit to the left­hand side member of this inequality is 2/(n−1). We therefore see that the terms of the new series are decreasing, with limit zero, so the original series converges. With all signs positive, the original series becomes the harmonic series, and is therefore not absolutely convergent. 1.1.12. The solution is given in the text. 1.1.13. Form the nth term of ζ(2)−c1α1 −c2α2 and choose c1 and c2 so that when placed over the common denominator n2 (n + 1)(n + 2) the numerator will be independent of n. The values of the ci satisfying this condition are c1 = c2 = 1, and our resulting expansion is ζ(2) = α1 + α2 + ∞ n=1 2 n2(n + 1(n + 2) = 5 4 + ∞ n=1 2 n2(n + 1(n + 2) . Keeping terms through n = 10, this formula yields ζ(2) ≈ 1.6445; to this precision the exact value is ζ(2) = 1.6449. 1.1.14. Make the observation that ∞ n=0 1 (2n + 1)3 + ∞ n=1 1 (2n)3 = ζ(3) and that the second term on the left­hand side is ζ(3)/8). Our summation therefore has the value 7ζ(3)/8. 1.1.15. (a) Write ζ(n) − 1 as ∞ p=2 p−n , so our summation is ∞ n=2 ∞ p=2 1 pn = ∞ p=2 ∞ n=2 1 pn . The summation over n is a geometric series which evaluates to p−2 1 − p−1 = 1 p2 − p . Summing now over p, we get ∞ p=2 1 p(p − 1) = ∞ p=1 1 p(p + 1) = α1 = 1 . (b) Proceed in a fashion similar to part (a), but now the geometric series has sum 1/(p2 + p), and the sum over p is now lacking the initial term of α1, so ∞ p=2 1 p(p + 1) = α1 − 1 (1)(2) = 1 2 . 13. CHAPTER 3. EXERCISE SOLUTIONS 10 1.1.16. (a) Write ζ(3) = 1 + ∞ n=2 1 n3 − ∞ n=2 1 (n − 1)n(n + 1) + α2 = 1 + ∞ n=2 1 n3 − 1 n(n2 − 1) + 1 4 = 1 + 1 4 − ∞ n=2 1 n3(n2 − 1) . (b) Now use α2 and α4 = ∞ n=3 1 n(n2 − 1)(n2 − 4) = 1 96 : ζ(3) = 1 + 1 23 + ∞ n=3 1 n3 − ∞ n=3 1 n(n2 − 1) + α2 − 1 6 − ∞ n=3 B n(n2 − 1)(n2 − 4) + Bα4 = 29 24 + B 96 + ∞ n=3 1 n3 − 1 n(n2 − 1) − B n(n2 − 1)(n2 − 4) = 29 24 − B 96 + ∞ n=3 4 − (1 + B)n2 n(n2 − 1)(n2 − 4) . The convergence of the series is optimized if we set B = −1, leading to the final result ζ(3) = 29 24 − 1 96 + ∞ n=3 4 n(n2 − 1)(n2 − 4) . (c) Number of terms required for error less than 5×10−7 : ζ(3) alone, 999; combined as in part (a), 27; combined as in part (b), 11. 1.2 Series of Functions 1.2.1. (a) Applying Leibniz’ test the series converges uniformly for ε ≤ x  0 is. (b) The Weierstrass M and the integral tests give uniform convergence for 1 + ε ≤ x  0 is chosen. 1.2.2. The solution is given in the text. 1.2.3. (a) Convergent for 1