149 32 6MB
Italian Pages 399 Year 2005
A Francesca, Paola, Laura
L. Formaggia F. Saleri A. Veneziani
Applicazioni ed esercizi di modellistica numerica per problemi differenziali
12 3
LUCA FORMAGGIA FAUSTO SALERI ALESSANDRO VENEZIANI MOX - Dipartimento di Matematica “F. Brioschi” Politecnico di Milano
L’immagine di sfondo della copertina rappresenta una simulazione numerica del campo di moto attorno a una imbarcazione da canottaggio da competizione (per gentile concessione di CD ADAPCO Ltd. e Filippi Lido s.r.l.). Nei riquadri: in basso, geometria semplificata e griglia di un disco freno per automobili; in alto, griglia di un modello di carotide fornito da D. Liepsch e dalla F.H. di Monaco di Baviera (gentile concessione di K. Perktold e M. Prosi). Entrambe le griglie sono state generate con il codice Netgen di J. Schöberl (http://nathan.numa.uni-linz.ac.at/netgen/usenetgen.html).
Springer-Verlag fa parte di Springer Science+Business Media springer.it © Springer-Verlag Italia, Milano 2005 ISBN 10 88-470-0257-5 ISBN 13 978-88-470-0257-9 Quest’opera è protetta dalla legge sul diritto d’autore. Tutti i diritti, in particolare quelli relativi alla traduzione, alla ristampa, all’uso di figure e tabelle, alla citazione orale, alla trasmissione radiofonica o televisiva, alla riproduzione su microfilm o in database, alla diversa riproduzione in qualsiasi altra forma (stampa o elettronica) rimangono riservati anche nel caso di utilizzo parziale. Una riproduzione di quest’opera, oppure di parte di questa, è anche nel caso specifico solo ammessa nei limiti stabiliti dalla legge sul diritto d’autore, ed è soggetta all’autorizzazione dell’Editore. La violazione delle norme comporta le sanzioni previste dalla legge. L’utilizzo di denominazioni generiche, nomi commerciali, marchi registrati, ecc, in quest’opera, anche in assenza di particolare indicazione, non consente di considerare tali denominazioni o marchi liberamente utilizzabili da chiunque ai sensi della legge sul marchio. Riprodotto da copia camera-ready fornita dagli Autori Progetto grafico della copertina: Simona Colombo, Milano Stampato in Italia: Signum Srl, Bollate (Milano)
! " # $
%
& #
" ' % # $ # (
% )& # " *
# ( %
( +
, -
- "
+
,
#
# $ # ( %
" ## % &
" 0
% (
" $ %
. /
(
-
&
% (
1
" ##
" *
&2 344. 5 & "
#
%
6
%
( ( "
$
#
# " ( 6 ( % # 7 " $
6 3 . 8" 6 3 #
)
6 . # 6 8
) 1 "
6 9 : # #
#
) 1 1 6 ; & " 7"? % " ?@
/ & ( # (
" 2 % % # &
(" 1 * % % % ( "
& # 1 % " A 1 " 7 !
&
%
% ( "
3449
0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
#
$#
. . . . . . . . . . . . . . . . . . . . % & % $# ' $# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . % (
! %
# ) $#
" #
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B:9
9"B
) 1 " " " " " " " " " " " " " " B:;
9"3
1 " " " " " " " " " " " " " " " 3BD
!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3..
:"B
# " " " " " " " " " " " " " " " " " " " " " " " " 3..
:"3
#
% " " " " " " " " " " " 3::
! $%& ' (
. . . . . . . 3D9
;"B
# " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " 3D:
;"3
# & " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .BC
) ) * + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 "B
6 1 " " " " " " " " " " " " " " " .89
"3
# " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .8:
".
? # " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .8D
"8
# " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .8C "9 Lp H s " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .94 p ":
l " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .9. ";
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .98
, -
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
!"B
!
% #
" " " " " " " " " " " " " " " " " " " " " " " " " " " .99
!"3
E
%
" " " " " " " " " " " " " " " " " " " .9;
!".
!"3"B
( 6>> " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .:3
!"3"3
(
!"3".
( 6 A " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .:;
!"3"8
( A " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .:C
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .:.
" " " " " " " " " " " " " " " " " " " " " " " " .;3 !"."B
# " " " " " " " " " " " " " " " " .;.
!"."3
E
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " .;8
!".".
E
+ , " " " " " " " " " " " " " " " " " " " " " " " " " " .;9
!"."8
6 # " " " " " " " " " " " " .;:
. .+ ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .;C * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CB
( 1 " * (
1
"
1 # # (
1 Vh
( # "
Vh
( "
%
[a, b] n % % &
Kj = [Vj−1 , Vj ] hj = Vj −Vj−1 j = 1, . . . , n n+1
Vi i = 0, . . . , n V0 = a Vn = b" E %
% Th (a, b) -
Th $ " # V
x
%
"
c)
0
6
7
1
8
9
2 10
11 3 12
13 4 14 15 5
K2 b)
0
a)
2,0
2,1
2,2
2,3
1
2,1
2,2
2
1,1 1,2
K1 0
K2 1
3,1 3,2 3
K3 2
4,1
4,2 4 5,1 5,2 5
K4 3
K5 4
5
r > 1
a)
Kj
•
K2
K
(
" #
r−1
r≥1
%
r − 1 xj,s = Vj−1 + shj /r j = 1, . . . , n s = 1, . . . , r − 1 7 B"B" xj,0 ≡ Vj−1 xj,r ≡ Vj "
Kj r ( f xj,s s = 0, . . . , r "
Kj
1
%
" *
"
s = 0, . . . , r
" F (
% " $ ( # $
xk = xj,s k = r(j − 1) + s s = 0, . . . r − 1 j = 1, . . . , n
1 xrn+1 = xn,r " ## N = nr + 1
% ( x0 < x1 < . . . < xN " % # # 1
"
% % $ 7 B"B %
( #
j = 1, . . . , n j − 1 s = 0, (j, s) ⇒ n + (j − 1)(r − 1) + s,
(n, r) ⇒ n"
(j, s)
s = 1, . . . , r − 1,
% $ %
n+1
(
xi = Vi
i = 0, . . . , n"
F
%
% #
% "
(
f ∈ C 0 ([a, b]) [a, b] ⊂ R r Th ( Πh f % ( Πhr f |Kj ∈ Pr (Kj ),
x0 , . . . xN
Πhr f (xi ) = f (xi ),
j = 1, . . . , n,
1
i = 0, . . . N,
Pr (Kj ) $ r Kj h = max1≤j≤n hj " h $ " Πhr f 5
#
r φi i = 0, 1, . . . , N
Πhr f (x) =
N
f (xi )φi (x).
B"B
i=0
(
φi (xj ) = δij ,
i, j = 0, . . . , N,
B"3
δij " φi (x) = 0 x Kj xi
%
"
$ N φi (x) = 1, i=0
∀x ∈ [a, b].
$
# B"B ( f = 1" 5 % & r
Πh : C 0 ([a, b]) → Xhr (a, b) 1 r B"B Xh (a, b) ( r Th
Xhr (a, b) ≡ {vh ∈ C 0 ([a, b]) : vh |Kj ∈ Pr (Kj ), j = 1, . . . , n}.
B".
r
( # Xh (a, b) % nr + 1" Πhr $ ( h
f C 0 ([a,b]) ≡ max |f (x)|, a≤x≤b
∀f ∈ C 0 (a, b),
( E #
5 ( H 1 (a, b)" ( % H 1 1 "BB/ -
Cr > 0
%
∀v ∈ H 1 (a, b) Πhr vH 1 (a,b) ≤ Cr vH 1 (a,b) .
B"8
!
φi
φ0
φn
a
1
b xi
x0
xn
" % v ∈ H p+1 (a, b) p > 0 s = min(r, p)
|v − Πh1 v|H 1 (a,b) v − Πh1 vL2 (a,b)
n 2s 2 ≤Cs,r,1 hj |v|H 2 (Kj ) ≤ Cs,r,1 hs |v|H s+1 (a,b) ,
n 2(s+1) 2 |v|H 2 (Kj ) ≤ Cs,r,0 hs+1 |v|H s+1 (a,b) . ≤Cs,r,0 hj
B":
j=1
√ v ∈ H 2 (a, b) % C1,1,0 = 5/24 C1,1,1 = 2/2" 1 / H 2 (a, b) 5 ( v ∈ H (a, b) v ∈ 2
L ( % n 2 2 r v − Πh vL2 (a,b) ≤ Cr hj |v|H 1 (Kj ) ≤ Cr h|v|H 1 (a,b) ,
B"9
j=1
j=1
√ C1 = 2
%
lim |v − Πhr v|H 1 (a,b) = 0.
B";
h→0
//
2 1 B"9 &
(
f1 (x) = sin2 (3x)
f2 (x) = | sin(3x)| sin(3x),
(1, 3) r = 1, 2, 3, 4" & s 2
( % f1 ∈ H (1, 3) s ≥ 0 f2 ∈ H (1, 3) 3 f2 ∈ / H (1, 3)" (
# ( 4
8 16 32
64"
& //
( 1 # 1
(
"
&
'
#
$
&
" L2 H s s ½ "
1
#
"
" A - 1
!"#$ % "#$ %! &!'#"#$ %% "#$ %! (&!$ #$ % #'#"#$ %%"#$ % "#"#$ %%%! )" " #*$*% #)%&
#**(%
& #*&*(% #)% # *+*$℄***"% )% # &*+*$℄*-&*(&.**"% & "( 0 (
h
7 B"."
( ## "
#
- (
f2
1
♦
h"
1
K
$ %
(
#
#
TK
K
Rd
'
7 B"8
K = TK (K).
B"D
K ¾ "
%
( "
TK 1
/
%
% & % ' (
2
h
Rd
r
)
d+1
*
0
10 0.2
10
0.1
10
0
h
||f−Π1 f||
1
||f−Π2h f||1
10
−0.1
10
−0.2
−1
10
10
−0.3
10
−0.4
10
−0.5
10
−1
−1
10
10
h
h
−1
10
−1
10
−2
||f−Π4h f||1
3
||f−Πh f||1
10
−2
10
−3
10
−4
10
−3
10
−1
−1
10
10
h
h
" H 1 (1, 3) %
f2
h f1 &
+
r = 1, 2, 3
4
C 1 (K) % " C 1 (K)
G # J(TK )
$ % *
%
" K
TK
!
$ (
, TK ( x) = aK + FK x
B"C
aK ∈ Rd FK ∈ Rd×d $
& |FK | > 0 # | · |
"
% hK K hK = maxx1 ,x2 ∈K x1 − x2 ρK
% ( K "
% x d x ∈ R " Th (Ω) Ω $ K = TK (K) %
Ωh 1 ⎞ ⎛
K⎠ , Ωh = int ⎝
K∈Th (Ω)
#
K1
K2
y
TK1
,
x
TK2
yb b K
x b
+ Kb - &
TK1 b K2 = TK2 (K)
& .
(0,1)
yb
(0,0,1)
(1,0)
(0,1)
yb
(1,1)
(1,0)
x b
x b
zb
(0,1,0)
(0,0,1)
R2
R3
yb
(1,0,0)
zb
(0,1,1)
x b
(1,1,1)
(1,0,1)
yb (1,0,0)
b K1 = TK1 (K)
&
b K
x b
&
Ω % limh→0 d(∂Ω, ∂Ωh ) = 0 h = maxK∈Th (Ω) hK d(A, B) A B Rd " & int(A)
AH ( % Ωh Rd " Ωh = Ω 5
## ( Ω $ TK $ '"
% Th Th (Ω)
% " TK $ ' % !" ' TK ( r r / PK b = P (K) PK = P (K)" K $ $ % K " 1 TK (
"
/
Th 1 Vh " Eh . (
Fh (
"
# K K1 , K2 ∈ Th K1 = K2 ## 7 B":
(
◦
◦
K 1 ∩ K 2 = ∅,
K1 ∩ K2 ∈ Vh ∪ Eh ∪ Fh ∪ ∅.
( "
" - .
- .
nv
&
Nl,b Nv,b
#
%
K Ne Nv Nl
#"
m $
m = 0
$ +( ,
( %
I7044℄
(a) Ne − Nl + Nv = 1 − m, (c) Nv,b = Nl,b .
Nf
cb
(b) 2Nl − Nl,b = nv Ne , m
B"B4
(
(
Nf,b
(a) Ne − Nf + Nl − Nv = m − cb − 1, (c) Nv,b + Nf,b = Nl,b + 2(cb − m). # $ %
Ω
Ω
# %
(b) 2Nf − Nf,b = nv Ne ,
B"BB
$ (
" A
1 % (
∃γ > 0 % ∀h > 0 γK =
hK ≥ γ, ρK
{Th (Ω)}h
∀K ∈ Th (Ω).
h
B"B3
γ
#
$ %
$
0
# $ "
) % (
"
//
. ( (
Ne
Nv (
$ (
Nf,b
#
"
% (
"" * #K
& //
Nf,b 2Ne + " 2
nv = 4
B"BB&b %
Nf =
#
$ &
1
%
$ # ( " B"B4&b 5 ( ( "
(
#
Nl B"B4&b $ Nl,b 1
# # Nl,b B"B4&b $
Th
Ne B"B4&b $ &
1
1
$ % " 1
Nf,b
(
# Th " > 2Nl,b = 3Nf,b Nl,b = 23 Nf,b "
% & % cb = 1 m = 0
" Nv,b = 2 + Nl,b − Nf,b = 2 + 12 Nf,b Nl = Nv + Nf − Ne − 2" ♦
#"
K
$
% ξ = (ξi , . . . , ξd+1 )"
Vi
%
K
x
Rd "
{Vi , i = 1, . . . , d + 1} Vi,j j
%
1
1 ... 1 1
V1,1 . . . Vd,1 Vd+1,1
K ≡ "
. " "
"" "
V1,d . . . Vd,d Vd+1,d
K = ±d!|K|
|·|
B"B.
Rn
$ "
$
K
+
1
V3
V4
z y
V1
V2
V1
x
x
V3
y
V2
2
V4
V3
K2 K1 K3 x
K2 K1 x K3 V1
V3
K4 V1
V2
V2
2
x
K
K $ j = 1, . . . , d + 1
% Kj (x) K
Vj
x" 1 j & x
K ,"
$
%
7 B";"
7 B"D
ξj (x) ≡
Kj (x) , K
j = 1, . . . , d + 1.
B"B8
#
% ( % ( '"
TK
$ '
K
K % K
#
% ( (
ξ1 = 1 −
d s=1
x s ,
ξj+1 = x j , j = 1, . . . , d.
B"B9
B 3 5
#
%
"
!
/ 6 #
%
x
K
℄
! " #℄# #℄# " #
/ 6
#
%
x
K
℄
$ #
1 # ( 1
Xh (Ωh ) ≡ {vh : vh ∈ V (Ωh ),
B"B:
V (Ωh ) $ ( P (K) $ 1
K " * Xh (Ωh ) %
nl
vh K ∈ P (K), ∀K ∈ Th },
Xh $ + # , (& (
%
1
K
( # - " ##
% % Xh V (Ωh )"
% Xh $ ( V V & (" $ ( C 0 %
( H 1 %L P (K) ⊂ H 1 (K) K
Xh (Ωh ) $
Nh " Xh V Xh → V h → 0 v ∈ V ǫ > 0 h0
I*2C8℄"
%
% (
inf v − vh V ≤ ǫ
vh ∈Xh
h ≤ h0 .
$ Σ = {σi : Xh → R, i = 1, . . . , Nh } (
Xh
vh ∈ Xh → (σ1 (vh ), . . . , σNh (vh )) ∈ RNh vh ∈ Xh $ σi (vh ) i = 1, . . . , Nh "
$ 1" ( #
* 1 $
&
#
%
% 1 -
vh
Ni
$ σi (vh ) = vh (Ni )" ( /
A &E% # = 1
K ? % C & (
# % vh " - 1 5 I048 *2C8℄ #
%
φi ∈ Xh
%
σi (φj ) = δij "
Xh
{φi ,
$ (
(
φi
i = 1, . . . , Nh }
# #
# &" 1
%
φi (Nj ) = δij ,
i, j = 0, . . . , Nh
B"B;
vh ∈ Xh
" > (
vh (x) =
Nh
5
σi (vh )φi (x).
B"BD
i=1
Xh & 1 &
K P (K) nl $
ΣK = {σK,i : P (K) → R, i = 1, . . . , Nl }
p ∈ P (K) → (σK,1 (p), σK,2 (p), . . . , σK,nl (p)) ∈ Rnl
P (K)
ΣK {φK,i , i = 1, . . . nl } ( σK,i (φK,j ) = δij " # p ∈ P (K) 5 (
$ 1" % 1 % #
p(x) =
Nl
σK,i (p)φK,i (x)
i=1
(
φK,i
%
&
x ∈ K.
# #
K"
#
% %
( 1 #
φi |K = φK,νK (i) , ∀K ∈ TK ,
!
≤ νK (i) ≤ nl $ ( ( φi & K " % σi (p) = σK,νK (i) (p|K ) ∀p ∈ Xh "
1
1 ( #
K
"
Xh % V & ( $ % P (K) ⊂ V (K) $ '
/ # #
"
1 $ %
( K r 1 K / P (K) ⊂ P (K) % r ≥ 0" P (K)
* $
%/ $ - (
1
% K P (K)
P (K)" & = { Σ σ1 , σ 2 , . . . , σ nl }
% (
%
# (
{φ1 , . . . , φnl }" % (& nl p ( x) = i ( p)φi ( x)" i=1 σ ( & 1 ( p ∈ P(K) p ∈ P (K) K $
#
( TK
$ ( (
σ i (φj ) = δij
−1 p(x) = p(TK (x)).
B"BC
( ( %
−1 φK,i = φi ◦ TK "
% 1 " 5 I048℄"
- & % & 0 C & ( " 1 r i ∈ K i = 1, . . . , nl (K) ⊂ P (K) N r P
# ( "
&
i ) ( σ i ( p) = p(N i ◦ T −1 ( # K φK,i = φ K i ) $ i& σK,i (p) = p(NK,i ) NK,i = TK (N K" ( %
0 1 - $ P(K) = Pr (K) TK $ '" K r 1
Xh (Ωh ) - & r
Xh " % ' (
Pr
5 % 1
Xhr = {vh ∈ C 0 (Ωh ) :
vh |K ∈ Pr (K),
7 B"C
( (
Pr
∀K ∈ Th }.
B"34
( (
%"
% /
i j
k
n
( -
!
- " %
7 B"C
% 1 d
$ nl = d! j=1 (r + j)" % ##
(
. 1 " % (
r=1
2
%
3
P1
" %
φn = ξi ,
r=2
P2
1≤i≤d+1
n = 1, . . . , d + 1.
%
φn = ξi (2ξi − 1), 1 ≤ i ≤ d + 1 n = 1, . . . , d + 1, φn = 4ξi ξj , 1 ≤ i < j ≤ d + 1 n = d + 1, . . . , nl .
r=3 φn φn φn φn
P3
1 2 ξi (3ξi − 1)(3ξi 9 2 ξi (3ξi − 1)ξj , 9 2 ξj (3ξj − 1)ξi ,
= = = = 27ξi ξj ξk ,
%
− 2), 1 ≤ i ≤ d + 1 n = 1, . . . , d + 1, 1 ≤ i < j ≤ d + 1 n = d + 1, . . . , 3d + 1, 1 ≤ i < j ≤ d + 1 n = 3d + 2, . . . , 5d + 1, 1 ≤ i < j < k ≤ d + 1 n = 5d + 2, . . . , nl .
P1 x b2
P2 x b2
3
B"3B
P3 x b2
3
3
9
8
6 5
10
5 1
2
1
x b1
x b3 4
3
x b2
4
x b1
x b3 4
10
3 9
7 6 2
1
2
x b1
1
x b2
4
13
16 15 19
10
2
x b1
1
6
3
20 9 17
5
x b2 14
18 12 7
2
7
x b1
x b3 4
8 5
1
6
8 11
2
x b1
Pr
P3
#
!
$
& C 0
% %
#
(
&
(
"
M ( ## (
# ( # ( (
# "
% $ ( # " $ ( ( ( %
$
(
"
//
1 % % ( 1 B"3B ( P2 "
(
& //
## 1
j ) = δij φi (N
j N
7 B"C" 6 # "
nl = 6
" A
%
#
#
% #
%
i 1 2 3
ξ1 1 0 0
ξ2 0 1 0
ξ3 0 0 1
( x1 , x 2 ) B"B9
i ξ1 ξ2 ξ3 4 1/2 1/2 0 5 1/2 0 1/2 6 0 1/2 1/2
3 ( ( φi = ξi (2ξi − 1) i = 1, 2, 3" φ0 = 0 $
1
( ξi
= 0 ξi = 1/2" # $ %
5 $ i " ξi = 1 φi (N i ) = 1(2 − 1) = 1" N ( ( φ4 = ξ1 ξ2 φ5 = ξ1 ξ3 φ6 = ξ2 ξ3 " %
#
$
3
" F 1 # %
1"
$ / % #
% ( ( 7 B"C"
i ξ1 ξ2 ξ3 1 1 0 0 2 0 1 0 3 0 0 1 4 0 0 0 5 1/2 1/2 0
ξ4 0 0 0 1 0
i ξ1 ξ2 ξ3 ξ4 6 1/2 0 1/2 0 7 1/2 0 0 1/2 8 0 1/2 1/2 0 9 0 1/2 0 1/2 10 0 0 1/2 1/2
*
( # " *
K
♦
# 5
1 ( (
r > 0" = Qr (K)
# x s % P (K) 2 2 3 2 r" x2 x ∈ Q ( K) x ∈ / Q ( K) "
% 1 2 1 ⊂ Qr (K) ⊂ Pdr (K) " ' Pr (K) K $ K ## " >
TK - "
( ( 1 ( - " (
Ni
φi
( ( ( 1 (
TK ( x) =
nl s=1
x), Ni φi (
B"33
K " & 1 # #
K 1 ( ( 1 P ( TK 1 B"33
$ 'N
*
TK $
%L ( & # ) " 1
( ( $ B"33
$ φi ∈ Pm (K) % m K m d # φi ∈ Qm (K) TK ∈ [P (K)] K d " 5 TK ∈ [Qm (K)]
x=
nl i=1
x), Ni φi (
∈ K. x
# 1 5
% d ( K
B"9"8" TK ∈ [Q1 (K)]
d = 2 d = 3"
m = r & m < r &
1 ' m = 1" m > r $ "
# " r 1 Q r > 0 $ 1 &
. ( # (
$ "
,
(K) = Qr (K) $ #
$ Qr
$ P 1 d TK ∈ [Q (K)] " 1 $ −1 vh |K = vh ◦ TK ; vh ∈ Qr (K),
Qh r = {vh ∈ C 0 (Ω h ) :
( ( (
∀K ∈ Th }.
K
( & φ1i i = 0, . . . , r" ξi i = 0, . . . , r [0, 1] ( φ1 (x)φ1 (y) d = 2
( # Qr (K) i j φ1i (x)φ1j (y)φ1k (z) d = 3 i, j, k 0 r" −1
% vh |K $ TK $ '"
//
# 1
d
r+d d
r+d r 1 Qr $ nl = (r + 1)d " d = 2 % d = 3" ' (
% ni=1 i = n(n + 1)/2 % ni=1 i2 = n(n + 1)(2n + 1)/6"
P
r
$
& //
nl =
1 d!
j=1 (r
+ j) =
Pr
=
P (K) = Pr (K)" * P (K) = Pr (K) % ( r" 6 d = 2" r $ ( i j r
$ ( x1 x2 i ≥ 0 j ≥ 0 i + j = s s = 0, . . . , r" # s $ s + 1" ( i % 0 s ## # j j = s − i" * r $
## %
# $
r
(s + 1) =
s=0
r+1
s = (r + 1)(r + 2)/2,
s=1
( "
% s ( xi1 xj2 xk3 i+j+k = s" * i 0 s j k ( j + k = s − i" # % i % s − i + 1 # j k # " * s $ s i=0
(s + 1 − i) =
s i=0
(s + 1) −
s i=0
i = (s + 1)2 − s(s + 1)/2 =
1 2 (s + 3s + 2). 2
/
r $ 1 r 2 s=0 s + 3s + 2"
( ( 2
#
%
# "
r 1 Q & r 1 Q (K)" ( r 1 $ r + 1 ( Q
♦
( "
//
Xhr
% 1
1 B"34
d
r
$
r=1 r=2 r=3 2 Nv Nv + Nl Nv + 2Nl + Ne " 3 Nv Nv + Nl Nv + 2Nl + Nf & // −1 p ◦ TK
K"
r ## % p ∈ Xh ( % p|K = r p ∈ P " TK # p
% p $
>
" 6 &
K1
% % %
r " V
% % p ∈ Xh
r
% p|K1 (V) = p|K2 (V) p ∈ Xh
5 $ # V $
# " (
K2
p V" K1 K2 ## Γ12 " & p
% p|K1 (x) = p|K2 (x) x ∈ Γ12 " 6 5 $ # p Γ12 $ 1 Γ12 " r
% r + 1 " % ## # %
% # r − 1 " * ( 3 + 3(r − 1) = 3r
"
B"9"B % Pr (K) (r + 1)(r + 2)/2 # (r + 1)(r + 2)/2 − 3r " r = 1
1 Xh Nv H r = 2 nl = 6 # & %
Nh = Nv + Nl " r = 3
1 #
2 $
$ # $ %
1
3
Nh = Nv + 2Nl + Ne "
$ "
0
"
% (
" 6
B"9". C 0 " >
% #
'
( #
//
" K
♦
K1 K2 e = K1 ∩ K2 $ ( ' ( K TK1 TK2 % e = " e K e) e) = TK2 ( TK1 ( 1 , x 2 ∈ e
e x x2 ) = x ∈ e" % C 0 x1 ) = TK2 ( TK1 ( r
( P
%
e K
"
Th
%
$ %
& //
7
( 7 B"B4" TK1 TK2 & = ∂K1 TK2 (∂ K) = ∂K2
K1 K2 TK1 (∂ K) " A B
e" 1 %
K j j = 1, 2, 3
( K V Ki j = 1, 2, 3
V j
Ki i = 1, 2" 6%
1 ) = VK1 = A" % K1 TK1 (V 1 2 ) = VK1 = B" (
VK1 1 TK1 (V 2 j j = 1, 2, 3 ( & " K2 TK2 (V 2 ) = V K2 = A K 2 K2 TK2 (V1 ) = V1 = B" TK2 (V1 ) = A TK2 (V2 ) = B ## ( &
#
K2 "
V 1 V 2 5 % e
K e) TK2 ( e)
e % " TK1 (
1 ' B"C ( ( %
1 V
$ (
(0, 0)
1 x
%
1) = A TK1 (V
, x) = A + FK1 x TK1 (
2 ) = B TK1 (V
1) = B TK2 (V
%
. TK2 ( x) = B + FK2 x
2) = A TK2 (V
2 = B − A, FK1 V
( x1 , x 2 )
$
1 V
%
2 = A − B. FK2 V
2 " 6 e x 2 = −FK V 1
FK1 V 2
" 2 % 0 ≤ α ≤ 1 %
1
2 − V 1) 1 = α(V x
(
2 − V 1 )" 0 2 = (1 − α)(V x ( % V1 % (0, 0)
2 = 2 = B + (A − B) − αFK V 2 = A − αFK V x1 ) = A + αFK1 V TK1 ( 2 2 2 = TK2 [(1 − α)V 2 ] = TK2 ( x2 ). B + (1 − α)FK2 V
Xh $ C 0 ( vh e
$ vh |K1 (x) = vh |K2 (x) x ∈ e" F %
5 $ # i ∈ e $ # "
Ni e N * Ni ∈ e TK1 TK2 ( Ni " 6 $ % 1
e " 7 B"BB
" ♦
A
V1K1 V1K2
TK1
K1 e
K2
V2K1 V2K2 B
TK2 b3 V
TK2 TK1
b K
eb
b1 V
b2 V
Kb 3
TK1 TK2
//
TK &
% K % &
7 B"B3
Q1
# "
" K
TK
$ #
$ "
e
e
TK1
TK1
TK2
eb
TK2
eb
be
3
e - . 4
-.
V3 V3
V4
V2
V1
V4
x2 V1
K
x2
K
θ4
TK V2 x b2 b3 V
b1 V
TK
b3 V
b4 V b K
x1
x b2
x1
b2 V x b1
b1 V
b4 V b K
TK &
& 5
& //
Q1
b2 V x b1
A
% ( ( (
φ1 ( x1 , x 2 ) = (1 − x 1 )(1 − x 2 ), x1 , x 2 ) = (1 − x 1 ) x2 , φ3 (
lij
( %
= Vj − Vi ## nl φi = 1 i=1
φ2 ( x1 , x 2 ) = x 1 (1 − x 2 ), φ4 ( x1 , x 2 ) = x 1 x 2 .
% 1 #
TK ( x1 , x 2 ) =
4 i=1
φi ( x1 , x 2 )Vi = [1 −
4 i=2
φi ( x1 , x 2 )]V1 +
4 i=2
φi ( x1 , x 2 )Vi
= V1 + φ2 ( x1 , x 2 )l12 + φ3 ( x1 , x 2 )l13 + φ4 ( x1 , x 2 )l14 .
"
6 TK K 12 TK 1 x 2 = 0 0 ≤ x 1 ≤ 1 " 5 12 TK ( x1 ) = TK ( x1 , 0) = V1 + φ2 ( x1 , 0)l12 + φ3 ( x1 , 0)l13 + φ4 ( x1 , 0)l14 .
i ## % φ3 ( x1 , 0) = φ4 ( x1 , 0) = 0 1 ( # φ 12 TK ( x1 ) = TK ( x1 , 0) = V1 + φ2 ( x1 , 0)l12 = V1 + x 1 l12 % $ 12 V1 l12 " TK (0) = V1 12 12 TK (1) = V2 " * x = TK ( x1 ) ( x1 , 0)
K
6%
TK
1 V
2 V
l12 " $ - '
x 1 x 2
x 1 x 2 x 3
K
## (
.
J(TK ) & " #
" *
G #
% %
TK
|J(TK )| > 0
% 1
" K
TK,1
w
R2
∂TK,1 ∂TK,1
∂ x1 ∂ x2
|J(TK )| =
.
∂TK,2 ∂TK,2
∂ x1 ∂ x2
A
1
v
v × w = |v||w| sin(θ), θ
v
w
∂TK = (1 − x 2 )l12 + x 2 l34 , ∂x1
B"3.
5
1 %
TK,2
|J(TK )| =
∂TK ∂TK " × ∂ x1 ∂ x2
∂TK = (1 − x 1 )l13 + x 1 l24 . ∂x2
13 24 13 24 = lij × lkl |J(TK )| = φ1 l12 + φ2 l12 + φ3 l34 + φ4 l34 " ( ( φj K ( 0 1 ( % $ Q1 " $ B" |J(TK )| ( K kl lij
kl kl min(lij ) = min(lij )
i
kl φi ≤ |J(TK )| ≤ max(lij )
i
kl φi = max(lij ),
$ "
##
&
" '
J(TK ) $ kl
% lij " A
( B"3. $
%
%
K
##
#
π"
1 %
$ % " ( l12 13 l13 ( π ## l12 ≤ 0 |J(TK )| ≤ 0 V1
"
7 B"B3
Q1
$ - "
♦
/
( Q1
%℄&!!% %℄&!!% " !!% ' & ( ) * % ( ' + * % ! !% ! ! %
//
x 1 x 2
.
[0, 1]
0.02
K1 K2
% " K1 / (0, 0) (1.5, 0) (0.1, 1.4) (1.6, 1.8) K2 / (1.3, 1.1) (1.5, 0) (0.1, 1.4) (1.6, 1.8)"
"
& //
(
/0( #
"
" ## 1
%
1
2+3 3 4 3 3 5 6℄ 2&+$ 4 3 3 5 6℄
"
(
1
!
+*℄(#333&*333&%
+*&℄1 #2**%
1
%
0#*&*"##%%% #+3*3*℄%
" 1
+*&℄1 #2&**% 0#*&*"##%%% #+3*3*℄% 1
7 B"B. # & "
x 2 → K2 K
%
1 /
% (
$ #
$
( x1 , x 2 )"
1.8
1.8
1.6
1.6
1.4
1.4
1.2
1.2
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0
0.2
0
0.2
0.4
0.6
x b2 b V3
.
♦
b1 V
0.8
1
1.2
1.4
1.6
b4 V b K
b2 V x1
0
0
0.2
0.4
0.6
x b2 b V3
b1 V
Q1
0.8
1
1.2
1.4
1.6
b4 V b K
b2 V x1
- . -
* 5
$
! Xh ⊂ V (Ωh ) ( V (Ωh ) $ Πh
1
Th
Πh : V (Ωh ) → Xh ,
Πh v(x) =
K ∈ Th ΠK v(x) =
σi (v)φi (x).
i=0
$
Nh
b N
σi (v)φi (x),
i=0
ΠK : V (K) → PK
x ∈ K.
Ωh " Ωh ⊆ Ω " -
$ 1 ( (
Ω
$
5 I6 ;D℄"
1 $ " 6
r r > 0 TK '" * r r P Q (
" r Πh % ( v ∈ C 0 (Ωh )
Πhr v(x) =
Nh
x ∈ Ωh ,
v(Ni )φ(x),
i=1
φi i& ( ( Ni " (
$ /
K
1
TK q > d2 − 1 l = min(r, q)" q+1 0 ≤ m ≤ l + 1 ∀v ∈ H (K)
'
%
r ≥ 1 1 C > 0 hK
m |v − Πhr (v)|H m (K) ≤ Chl+1−m γK |v|H l+1 (K) . K
γK
m>0
B"38
% ( (
"
r 1 # % Xh $ H & ( m ( H m > 1" %
Hm
%
|v − Πhr (v)|H m (Ωh ) ≤ C
K∈Th
m > 1" m = 0, 1
2(l+1−m) 2m γK |v|2H l+1 (K) hK
1/2
≤
Cγhm hl+1−m |v|H l+1 (Ωh ) ,
B"39
*
$ γh ≤ γ K∈Th
γh = max γK "
h
|v − Πhr (v)|H m (Ωh ) ≤ Chl+1−m |v|H l+1 (Ωh ) .
5
B"3:
5 1
5 I*2C8 048℄"
Qr
r≥1
# " 6%
TK # 1
K
Th 4 K Vj
Kj j = 1, . . . , 4"
% B"9"8"
ρK = min ρKj 1≤j≤4
γK =
hK . ρK
'
γK % (
1 ' " Qr
ΠK K " C > 0 % 0 ≤ m ≤ r + 1 ∀v ∈ H r+1 (K) r
max(4m−1,1) k+1−1
Q |v − ΠK |H m (K) ≤ CγK
h
|v|H r+1 (K) .
B"3;
'
γK ## ' % L2
m = 0"
5 % ) " h * " Pr + # % Qr , -
. Pr /
Parte I
Problemi stazionari
"#$ %
#
# /
u ∈ V : a(u, v) = F (v) ∀v ∈ V.
3"B
# $ O& I* 4.℄ %
/
' V 0 + a(·, ·) : V × V → R #
"
"$ α+ F : V → R # / 0 / 1 023 4
1/2 / 3
||u||V ≤
||F ||V ′ =
1 ||F ||V ′ , α
|F (v)| . v∈V,||v||V =0 ||v||V sup
#
Ω ⊂ Rd d = 1, 2" V ⊂ H 1 (Ω)"
%
( "
# )
% #
Ω
%
%
V =
ΓD = ∅
HΓ1D
ΓD "
1
≡ {v ∈ H (Ω) : v|ΓD = 0}.
V
3"3
4
uL2 (Ω) ≤ CP ∇uL2 (Ω) ,
3".
1
67 %
CP Ω " 0 3". 5 2 1 ( L (Ω) H (Ω)
∇u2L2(Ω) ≤ uH 1 (Ω) ≤ (1 + CP2 )∇u2L2 (Ω) . ΓD
$
V = H 1 (Ω)
3"8
$
$
# " 1 # ) &
u = g ΓD g = 0" '
5 #
% #
Ω
"
g
R
g
$ '
% # 1/2 g ∈ H (ΓD )"
Ω
C1
Ω
Ω
% &
$
$
"
( "B. & G ∈ H 1 (Ω) G|ΓD = g
I* 4.℄"
◦
u≡ u − G, ◦
u∈ V ≡ HΓ1D (Ω)
# / ◦
%
a(u, v) = Fg (v) ≡ F (v) − a(G, v)
∀v ∈ V.
# 5
O&
Fg $ F (·) a(·, ·)" * % # 1
%
(
O&
a(·, ·)
F (·)
(
# ( "
%
Wg ≡ {v ∈ H 1 (Ω) : vΓD = g}
3"9
Wg ) $ % %
$ ( $ % " '"
#
% 5 ( ( % $ O& "
67 %
Gh
Gh
x0
ΓD
x1
xn
+
' ( " u ∈ Wg : a(u, v) = F (v) ∀v ∈ V
. /
≡ HΓ1D ,
3":
" Wg ≡ {v ∈ H 1 (Ω) : vΓ = g}+ g ∈ H 1/2 (ΓD ) Ω ! / ' # a(·, ·) * +
" V × V # F (·) * V + $ / , D
||u||V ≤ C(||F ||V ′ + ||g||H 1/2 (ΓD ) ),
" C
"$ α cγ /2 / 6
( ( $
G
Wg
G+V"
$
5 #
" # 1
"
(
i∈BΓD g(xi )φi |ΓD BΓD $ xi %
# ΓD φi ( # " 6 $ Gh = i∈BΓD g(xi )φi " ( 1 Vh
# 5
gh =
% 1 % % % #
% 1
7 3"B" * $
% #
% #
!" * ( ( # 3": 0 < & 1 r Gh ∈ Xh 1 B"34 # 1 / uh ∈ Gh + Vh ≡ Wg,h
67 %
Gh + Vh ≡ {vh ∈ Xhr : vh|ΓD = Gh } %
a(uh , vh ) = F (vh )
vh ∈ Vh
3";
Vh = {vh ∈ Xhr : vh|ΓD = 0}.
% (
#
u % du du d + σu = f, ν +β − dx dx dx
) ( /
x ∈ (a, b),
# '
σ
(
x"
3"D
ν β f
) 1
(
"
%
#
# 6 . )
"
( ( % # 3"D H m+2 (a, b) f ∈ H m (a, b) m ≥ 0"
'
/ /
# #
B"
−u′′ + u = 0 x ∈ (0, 1), u(0) = 1, u(1) = e.
3"C
( # # # $
"
3" 0 < & 1
(
1
#
( h" 1 % H 1 (0, 1) L2 (0, 1) h % 1/10 1/320 %
$
u(x) = ex "
5
& / /
# %
% " % ( #
3"C1 ( 1 v ∈ V ≡ H0 (0, 1)H (0, 1) ##
1
′′
− u v dx + 0
1
∀v ∈ V.
uv dx = 0
0
%
v(0) = v(1) = 0
1
′ ′
u v dx +
1
∀v ∈ V.
uv dx = 0
0
0
3"B4
ΓD = {0, 1} ( # / u ∈ Wg 1 3"9 % a(u, v) = 0 ∀v ∈ V a : V × V → R $ (
#
a(u, v) ≡
1
′ ′
u v dx +
0
1
uv dx.
3"BB
0
# # 3"BB 6 3"B/ ## 1 % ( #
V ×V" &
&
a
a
$
$
## %/
a(·, ·)
1
1
|a(u, v)| ≤
u′ v ′ dx
+
uv dx
0 0 ≤ u′ L2 (0,1) v ′ L2 (0,1) + uL2(0,1) vL2 (0,1) ≤ 2uV vV ;
"
a(u, u) = u′ 2L2 (0,1) + u2L2 (0,1) = u2V . * 6 3"B 3"BB
$ # "
Vh V Vh → V (
∞
dim(Vh ) → uh ∈ Gh + Vh
1 % 0 < 3"BB $/
!
67 %
%
Vh
a(uh , vh ) = 0 ∀vh ∈ Vh " 1 Pr Vh ≡ {vh ∈ Xhr : vh = 0
Xhr
r = 1, 2, 3
ΓD } ,
3"B3
$ B". 6 B"
(xj−1 , xj )
Th
(0, 1)
h"
A
% #
Nh
Kj ≡
(" (
1 &
$
#
% 7 3"3"
+
1 %
7 3". " %
( % # $ '
( ( "
'
# #
% # 7 3". "
7
%
"
1 % % 1 ##
P
r = 1, 2, 3
"
8 3 7 7
3"8 " 6 %
1 "
/ #
#
#%"
7
"
5
$
8 9
- /.
& 5
(
% 7 3"9" 4"44B9.C. 2 1
L 4"49B9C8 H " 92 1 1
7 3"9 %
1 # "
: 1 : 1
" 1 &
" > & P2 P3
E # 3"B"
% 7 3"9 E # 3"B"
r
% h $
/
H 1 r + 1 L2 1 r" ♦
*
67 %
5 %
&
P1 P2 P3 u − uh L2 u − uh H 1 u − uh L2 u − uh H 1 u − uh L2 u − uh H 1
h
11$$0!
1 ,%1$ 1111**$,* $0 0 %1/
$* *%1*
11$
1
1111 /!/!
111$ 0
11 $,0/
/!$%1*
1111**$
,1 $/%1,
11 $
0* %1$
11 /00
*1$0%1,
!* %1$
,0%1
/,0$/%1/
11 $
!1$ %1$
111*!!0!
11,!%1/
1!1/%1$
!!/0%
100$%1/
111* $
*1 %1*
111
!,
$10 %10
*10%1*
!$ %
,! %10
$1
111* !
*,%1
*$1!/%1,
,!%
0 1/%1
111 $
%1*
,1/%10
5 h
L2 (0, 1)
/ /
H 1 (0, 1)
# )
3"C1
2u(0) − 5u′ (0) = −3, B"
u′ (1) = e.
3"B.
( # # "
3" 1
(
&
( "
& / /
A# " 6 %
u ∈ V ≡ H 1 (0, 1)
%
5
1 0
u′ v ′ dx − u′ (1)v(1) + u′ (0)v(0) +
1
uv dx = 0
0
,
∀v ∈ V.
3"B.
( #/
1
u∈V
%
2 u v dx + u(0)v(0) + 5 ′ ′
0
1 0
3 uv dx = ev(1) − v(0) ∀v ∈ V, 5
3"B8
( #
a(u, v) ≡ (
1
′ ′
u v dx +
0
1
2 uv dx + u(0)v(0) 5
0
F (v) ≡ ev(1) − 3/5v(0)"
( # $
2 a(u, u) = u′ 2L2 (0,1) + u2L2(0,1) + u2 (0) ≥ u2V . 5 F
2 |a(u, v)| ≤ u′ L2 (0,1) v ′ L2 (0,1) + uL2 (0,1) vL2 (0,1) + |u(0)| |v(0)| 5 ≤ (2 + 2C/5)uH 1(0,1) vH 1 (0,1) , 6 %@& %P
" (
F
$ "
# 0 < 1 / uh ∈ Vh % 1 vh ∈ Vh Vh Xh "
aij
a(uh , vh ) = F (vh )
aij ≡ a(ϕj , ϕi ) fi ≡ F (ϕi )"
u % %
'
ui # I* 4.℄
Au = f .
3"B9
( 0 & <
%
"
/
67 % A #
(" A #
1 # A# 7 3":"
%
(
(
α = 2/5 β = −3/5
−u′ (0) + αu(0) = β
γ = e = #%
u′ (1) = γ "
"
- 0.1 %- .
1
h = 0.1"
h
> 1
7 3"; %
>> +3 334 33&4 33&4 3335&4 333$&4℄ >> ;& +33336&4$6 3333&354& 45> ? +3344>> 33&4>=5 33&6== 3335=
333$&&> 3335&℄
%
q e h '
$
h
e(h) ≃ Chq
(
C $ h" h = h1 h = h2 q q h1 e(h1 ) ≃ ⇒ q ≃ log(e(h1 )/e(h2 ))/ log(h1 /h2 ). e(h2 ) h2
5
0
−1
10
−2
10
−3
1
10
1 −4
10
−5
10
2
−6
10
1
−7
10
−3
−2
10
−1
10
10
5 h L2 - .
H 1 - . )
>> /;& #;&5% ;4%% ##&5% #4%%
==66
===>
====
&3333
&3333
3===5
3====
3333
3333
3333
>> /? #?#&5% ?#4%% ##&5% #4%% ♦
( "
/ /
(
p
T % L x ∈ (0, L) # ) /
A
−kAT ′′ + σpT = 0, x ∈ (0, L), T (0) = T0 ,
$
A k
T ′ (L) = 0,
3"B:
'
'
(
T0
σ
$ "
B"
"
3"
( # 3"B:
0 < & 1 " H01 (0, L) k σ p T0 % " ." 1 % 1 ##
1 # 1 T0 = 10 σ = 2 k = 200"
(
!1
67 %
& / /
) 3"B: (
T (x) = C0 eλ0 x + C1 eλ1 x ,
3"B;
C0 C1 # # λ0 λ1
m =
σp/(kA)
−kAλ2 + σp = 0. λ0 = −m λ1 = m & T (x) = C0 e−mx + C1 emx " C0
C1 #
% % C0 + C1 = T0 −C0 e−mL + C1 emL = 0"
C0 =
T0 emL −mL e + emL
=
T0 emL T0 e−mL T0 e−mL , C1 = −mL , = mL 2 cosh(mL) e +e 2 cosh(mL)
T (x) =
cosh(m(x − L)) T0 . em(L−x) + e−m(L−x) = T0 2 cosh(mL) cosh(mL)
( # 3"B:" ΓD v ∈ V ≡ HΓ1D
3"B: (
= {0}
&
L L ′′ −kA T (x)v(x) dx + σp T (x)v(x) dx = 0 ∀v ∈ V. 0
0
L L ′ ′ kA T (x)v (x) dx + σp T (x)v(x) dx − kA[T ′ v]L 0 = 0, 0
[f ]L 0
0
f (L) − f (0)" 6 T ∈ Wg
( #/
%
a(T, v) = 0
3"BD
a(·, ·) : V × V → R
∀v ∈ V,
$ ( #
3"BC
5
!
L L ′ ′ a(u, v) ≡ kA u (x)v (x) dx + σp u(x)v(x) dx. 0
0
2 1 %
" ( # $
|a(u, v)| ≤ M uV vV
M = kA + σp
$ %
V
%L
a(u, u) = kAu′ 2L2 (0,L) + σpu2L2 (0,L) ≥ kAu′ 2L2 (0,L) ≥ αu2V ,
α = kA/(1 + L2 /2)"
( %
v(0) = 0
3"34
%
2
x
x x
2 ′ 2
|v(x)| = v (x)dx ≤ 1 dx (v ′ (x))2 dx ≤ xv ′ 2L2 (0,L)
0
0
0
L vL2 ≤ √ |v ′ 2L2 (0,L) , 2
% $ % L"
v2H 1
=
v2L2 (0,L)
+
v ′ 2L2 (0,L)
L2 ≤ 1+ v ′ 2L2 (0,L) 2
% $ 3"34" 7
% % %
a(u, u) ≥ min(kA, σp)u2V . * % ( # %
%" # L $
σp
% %
"
Vh V 1 Nh " & #
Gh
0 < 3"BC $ /
Th ∈ Gh + Vh
%
a(Th , vh ) = 0
∀vh ∈ Vh , Th
(
0 < & 1
Nh & {Kj } % % h # Vh $
(0, L)
!
67 %
Vh ≡ {vh ∈ Xhr (0, L) : vh (0) = 0} ,
Xhr
$ B"."
u − uh H 1 (0,L) ≤
C
u ∈ H q+1 (0, L)
q>0
CM s h |u|H s+1 (0,L) , α
s = min{r, q} |·|H s+1 (0,L) H s+1 (0, L)" k σ p
σp
M/α
M/α"
%
5 / #
" * ( M %
0 <
" #
% $
6 ."
A #
(
'
kA = 0.02π σp = 0.04π " 6 h % 1/10 1/320 7 3"D
( h"
% B 3 H 1 L2 " ♦
−2
10
−3
10
1 −4
10
1 −5
10
2 −6
10
1 −7
10
−3
10
−2
10
−1
10
5 L2 (0, 1) - .
H 1 (0, 1)
- .
h
5
/ /
6 = &
2H
7 3"C"
Tsup
%
(
!
Tinf "
U
&
T : (0, 2H) → R = ( #
%
⎧ ⎨
d2 T = α(H − y)2 (0, 2H), dy 2 ⎩ T (0) = Tinf , T (2H) = Tsup , −
α = 4U 2 µ/(H 4 κ) κ = 0.60 $ '
µ = 0.14
∇ · (µ∇u)v dω +
Ω
b · ∇uv dω =
Ω
v ∈ V ≡
f v dω.
Ω
( 0
µ∇u · ∇v dω +
Ω
b · ∇uv dω =
Ω
Ω
f v dω +
gN v dγ.
ΓN
( # 3".: $ / Wg = {w ∈ H 1 (Ω) : w|ΓD = gD } %
u∈
a(u, v) = F (v) ∀v ∈ V, 3".; a(u, v) ≡ Ω µ∇u · ∇v dω + Ω b · ∇uv dω F (v) ≡ Ω f v dω + ΓN gN v dγ "
2 1 % 6 3"B" #
a(·, ·)
F (·)
"
γT
|F (v)| ≤ ||f ||L2 (Ω) ||v||L2 (Ω) + ||gN ||L2 (ΓN ) ||v||L2 (ΓN ) # $ ≤ ||f ||L2 (Ω) + γT ||gN ||L2 (ΓN ) ||v||H 1 (Ω) ,
%
"B3"
%
a
$
% (
vb · ∇v dω =
1 2
Ω
b · ∇v 2 dω =
Ω
∇ · b = 0"
( ( %
a(u, u) =
b·n ≥0
ΓN
%
b · nv 2 ,
ΓN
µ|∇u|2 dω +
Ω
1 2
v∈V
*
1 2
b · nu2
ΓN
%
a(u, u) ≥ µ0 ∇u2L2 (Ω) .
L % $
#
u
# % ( # $
2
α = µ0 /(1 + CP ) CP L" % a(·, ·) $ % " ) ##
|a(u, v)| ≤ µ∇u · ∇v dω + b · ∇uv dω
Ω
Ω
≤ µ1 ∇uL2 (Ω) ∇vL2 (Ω) + b1 ∇uL2 (Ω) vL2 (Ω)
≤ M uV vV ,
M = max{µ1 , b1 }"
## 1 % $
"
0 < # 3".; $/
%
a(uh , vh ) = F (vh )
Vh
uh ∈ Wg,h
∀vh ∈ Vh ,
1 B 3
V"
)
"
' %L ( f (x, y) = 4π 2 (sin(2π(x +
# )
y)) + sin(2π(x − y))) + 2π cos(2π(x + y)) gD = sin(2πx) cos(2πy) gN = −2π cos(2πx) cos(2πy)" 1 #
*
67 % 1
10
10 10
1
0
0
1
−1
10
1
10
2
−2
−1
10
10
−3
1
1 10
−2
10
2
10
−4
−5
3
−3
10
10 −4
10
−3
10
10
−2
10
−1
10
−6
−7 −3
−2
10
10
10
−1
5 L2 (Ω) H 1 (Ω)
- . & - .
0" "#& % #& % 0" V ≡ a(v, u) =V < u, Lv >V ′ ,
%
L = LS + LSS ,
con
⎧ 1 ∗ ⎪ ⎪ ⎨ LS = 2 (L + L ) , ⎪ ⎪ ⎩ L = 1 (L − L∗ ) . SS 2
) H01 (0, 1)
( #
1
′′
(−µu + σu) vdx = µ
0
0
1
′′
′ ′
u v dx +
1 0
σuvdx ≡ aDR (u, v).
Lu = −µu + σu < Lu, v >V "
( 1 V ′
2 6 ( (
v
% %
aDR (·, ·)
,$
u′ v ′
u
$
"
6 "
%
b " aT (u, v) ≡ b
1 0
( #
(
′
u vdx = −b
1 0
."B
b $ $
LS u = −µu′′ + σu,
6
aT (u, v) =
uv ′ dx = −aT (v, u).
1
b
1 bu vdx = 2 ′
0
LSS u = bu′ .
."3
" %
1
1 bu vdx + 2 ′
0
1 0
1 (bu) vdx − 2 ′
1
b′ uvdx.
0
$ #
"
(
1 2
1 0
# ′ $ 1 bu + (bu)′ vdx = − 2
1 ′ LS = −µu + σ − b u, 2 ′′
/ /
1 0
$ # (bv)′ + bv ′ udx.
LSS =
1 ′ 1 ′ bu + (bu) . 2 2
♦
) & & (
Lu = −µ△u + b · ∇u + σu
µ
σ
& / /
.".
b
u ∈ H01 (Ω)"
> %
b · ∇u =
1 1 1 b · ∇u + ∇ · (bu) − (∇ · b) u. 2 2 2
,*
; V
< Lu, v >V ≡
′
Ω
1 2
Ω
µ∇u · ∇vdω +
Ω
1 2
(∇ · b) uvdω +
(−µ△u + b · ∇u + σu) vdω =
1 2
Ω
(b · ∇u) vdω +
Ω
σuvdω ≡ a(u, v).
Ω
∇ · (bu)vdω−
µ∇u · ∇vdω + Ω (σ − 12 ∇ · b)uvdω $
Ω ( "
( #
aS (u, v) ≡
( 0
aSS (u, v) ≡ 1 − 2
1 2
Ω
(b · ∇u) vdω +
1 ∇ · (bv)udω − 2 Ω
Ω
1 2
Ω
(b · ∇v) udω = −aSS (v, u).
$ LS u 1 1
$ LSS u = 2 (b · ∇u) + 2 ∇
/ /
∇ · (bu)vdω =
= −µ△u− 12 (∇·b)u+σu · (bu). ♦
# /
⎧ 2 ⎪ ⎨− ⎪ ⎩
∂2u ∂2u ∂2u ∂u ∂2u +β 2 +γ +δ 2 +η = f in Ω, ∂x1 ∂x1 ∂x2 ∂x2 ∂x1 i,j=1 ∂xi ∂xj
u=0
su ∂Ω,
β γ δ η '
f x = (x1 , x2 ) ∈ Ω "
B"
."8
$ (
'
%
#"
3"
% 0 < & 1 "
."
# $
& ( #
K
%
#
"
& / /
# 5 (
2 −∇ · (K∇u) + B · ∇u = f
Ω K B
,, ."9
-
M 1
⎤ 1 (1 − γ) ⎥ ⎢ 2 ⎥, K≡⎢ ⎣ ⎦ 1 (1 − γ) 1 − δ 2 ⎡
⎡ ⎤ η B ≡ ⎣ ⎦. 0
1−β
."9
#
u=0
∂Ω "
)
# $
1 I*2C8℄ 6 " : 2 µ0 > 0 % χ R ## 2
i,j=1
µKij χi χj ≥ µ0 ||χ||2 .
.":
1
K
@ I*
44 ℄ #
$ 1
" 1
%
1 (1 − β)(1 − δ) − (1 − γ)2 > 0. 4
1 − β > 0,
.";
% - ."; 5
δ V "
% # $
##
% ( # $
"
( #
1 2 (∇u)u = ∇|u| L 2 a(u, u) = (K∇u) · ∇udω + B · (∇u)udω ≥ Ω
2 µ0 ||∇u||L2
1 + 2
Ω
Ω
$ # 2 ∇ · Bu2 dω ≥ α||u||V +
α = µ0 /(1 + CP2 ) CP
%
2
B · nu2 dγ = α||u||V
∂Ω
$ L" &
$
O&
"
V
Vh ⊂ Xhr Xhr
$ B"34 6 B"
Vh r ( Xh #" ( # / uh ∈ Vh % vh ∈ Vh ## a(uh , vh ) = F (vh )" # $ # (
# "
u ∈ H s+1 (Ω)
I* 4.℄ 6 " .
γ Chq |u|H q+1 , α
||u − uh ||H 1 ≤
M
$ ( #
q = min(r, s)"
|η| ≫ µ0
γ = µ1 + |η| 1 "
C
$
% %
γ/α ≫ 1
#
+ # ," 1 %
η=0
( #
."B"3" (
a(u, v) =
(K∇u) · ∇vdω =
Ω
K
a(u, v)
$
∇u · (K∇v) dω = a(v, u).
Ω
#
%
) '
Aij = a(ϕj , ϕi )
%
η =0
$
2
,0
% 1 -
%
( # " I*
44 ℄/
B" ( #
# 6%H
%
( & % ( & "
A
(
$ ( 6% 0. 1 + CP2 %
min ψ ′′ < 0
( "
6 ( # ##
u′ = ρ′ eψ/µ + ρeψ/µ
ρ"
u = ρeψ/µ
ψ′ ⇒ µu′ = µρ′ eψ/µ + ψ ′ u. µ
- #
u
%
u(0) = u(1) = 0 ⇒ ρ(0) = ρ(1) = 0. #
ρ
# )
⎧ # $′ ⎪ ⎨ − µeψ/µ ρ′ = 1 x ∈ (0, 1), ⎪ ⎩ ρ(0) = 0,
ρ(1) = 0,
( #
# $/
µ
1
eψ/µ ρ′ v ′ dx =
0
( # $ %L
0
ρ∈V
%
1
vdx
∀v ∈ V.
ψ ∈ L∞ (0, 1)
% ## ( "
$ ( %
µ > 0
%
#
% 5
L"
0*
; 6 1
ψ = αx"
6
( ( #
C1
′ −µ eαx/µ ρ′ = 1
x −αx/µ , e ρ = C1 − µ ′
da cui
$ "
µ x µ ρ = −C1 e−αx/µ + e−αx/µ + 2 e−αx/µ + C2 , α α α C2 $ " C1 C2 #" 6M (
ρ=
! ! 1 eαx/µ − 1 1 1 − e−αx/µ −αx/µ ⇒ u = + xe x − . α 1 − eα/µ α eα/µ − 1
E # ) 1
# % ( ."./
||ψ ′ ||L∞ (0,1) h 2µ
e
||ψ ′′ ||L∞ (0,1) h2 . 6µ
1
2µ , h< ′ ||ψ ||L∞ (0,1)
h
1
ρ
#
ρ
u
/
1
1
; h = 0.1 h = 0.01 h = 0.001 K(A) 3.917901e + 34 3.526591e + 42 1.282097e + 44 eL2 0.00049809 0.00010876 1.2482e − 06 eH 1 0.049641 0.02894 0.0032238
8 ρ µ = 0.01 α = 1
h = 0.1
h = 0.01
h = 0.001
0,01F ! */,** F! ! 1/ ,0F!* /0$F!1 0 $, F 0
0 !F !!0F! ,,,0!$!F! $1/1F , 8 ρ µ = 0.01 α = −1 K(A) eL2 eH 1
1
1
0.9
0.9
0.8
0.8
0.7
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0
0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
2 u ρ µ = 0.01 h = 0.001 α = 1 - . α = −1 -. )
&
)
ρ u" 2
α = −1 ρ - u # " # ) &
( M % u
# 7 ."BC"
♦ 5%"
1
#
# &
"
ρ
# #
" '
$ I ;.℄"
"
#% I D8℄ 6 " 9"3 / +E ( - #
%
) ," ( #
# $ &
- %
1
"
//
# ) & &
⎧ −△u + ∇ · (βu) + u = 0 in Ω ⊂ R2 , ⎪ ⎪ ⎪ ⎪ ⎨ u=ϕ su ΓD , ⎪ ⎪ ⎪ ⎪ ⎩ ∇u · n = β · nu su ΓN ,
."B9
Ω $ ∂Ω = ΓD ∪ΓN ΓD ∩ΓN = ∅ ΓD = ∅"
# ( # T ( β = (β1 (x, y), β2 (x, y))
ϕ = ϕ(x, y)" ||β||L∞ (Ω) ≫ 1 # & 1
& 1 0& 1 0 < & 1 " 1
Ω = (0, 1) × (0, 1) β = (103 , 103 )T ΓD = ∂Ω
⎧ 1 per x = 0 0 < y < 1, ⎪ ⎪ ⎪ ⎪ ⎨ ϕ = 1 per y = 0 0 < x < 1, ⎪ ⎪ ⎪ ⎪ ⎩ 0 altrove.
1 % % % # # (
% # "
& //
v ∈ V ≡ HΓ1D (Ω). ( 0 %
(
Ω
∇u · ∇vdω −
∂Ω
∇u · nvdγ +
∂Ω
β · nuvdγ −
β · ∇vudω +
Ω
6
#
uvdω = 0.
Ω
ΓD
ΓN
1!
; −
∇u · nvdγ +
∂Ω
−
β · nuvdγ =
∂Ω
(∇u · n + β · nu) vdγ −
(∇u · n + β · nu) vdγ.
ΓN
ΓD
ΓN ∇u · n − β · nu = 0 ΓN " * 1 % + &
ΓN " ΓD # G(x, y) ( H 1 (Ω) % G(x, y) = ϕ(x, y) G $ % ϕ ∈ H 1/2 (ΓD ) %
,
v = 0"
ΓD "
Ω
'
"
' %L
1 " # ( # 5 /
u∈G+V
%
v∈V
a(u, v) = 0,
a(u, v) ≡
∇u · ∇vdω −
Ω
β · ∇vudω +
Ω
uvdω.
Ω
# (
( 3"B"
% β ( L∞ (Ω)" 6
% ( # $
V
(
a(w, w) = ||∇w||2L2 (Ω) −
1 2
H 1 (Ω)"
w ∈V
β · ∇w2 dω + ||w||2L2 (Ω) .
Ω
||w||2V "
"
( 0 #
1 − 2
1 β · ∇w dω = − 2 2
Ω
1 β · nw dγ + 2 2
ΓN
∇ · βw2 dω.
Ω
%
∇·β ≥0
in Ω
e
β·n≤0
su ΓN ,
."B:
% ( # $
# $ # " 4
β 9 G
% ∇ · β = 0 - *.
8
G H I - G B.
1$
1 & Vh ⊂ Xhr B"34 ( ΓD
uh % vh ∈ Vh
1 & ##
a(uh , vh ) = F (vh ). L
$
Pe ≡
||β||L∞ h ||β||L∞ h = " 2µ 2
%
Pe < 1"
5
+ # ,
7 7 "
# $
" ( # 1 I* 4.℄ 6 " 9/
ah (uh , vh ) = a(uh , vh ) +
h (∇uh , ∇vh ) . ||β||∞
* 1 % ( # ( # &
"
5
## # )
#
%
B 1 M
."3"B" %
% & 1
- ( 0 < $
%
L
' 85 " 7 '8 7 "
)
#
Lu = −△u + ∇ · (βu) + u, &
."B"3
LSS u =
1 1 (β · ∇u) + ∇ · (βu). 2 2
( ( # # 0
ah ( uh , vh ) = a( uh , vh ) +
K∈Th 5
Pe
hK LSS vh , δ L uh , |β|
) 9 %
! ) 9
max i
||β||L∞ (Ki ) hi 2µ
Ki
) i%
hi
Peloc =
1*
;
K
$
1 "
Th
δ
$
% % )&
( (
( " A + # , % & # " ( & # # ( (" 5 % $ '
hr+1/2 r
%
1 "
#
% $ # %
1 "
∇·β = 0
meas(ΓN ) = 0
8 1
."B:
# # &
1
" 1 # #
0 $ 9"
/ # ) 3
1
! .!( /0/0# -!.!1# -! 0# # 0# 2000# 2000# # (3%3%# 000# 4 %5 6789: 202; %.! $ $ $